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Superelasticity
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Superelasticity

Superelasticity is a property of crystalline materials.

Typical examples of known superelastic materials:

Ni-Ti

Nitinol (acronym for Nickel Titanium Naval Ordnance
Laboratory) is the most widely used superelastic material.

Cu-Zn-Al

Cu-Al-Ni

Co-Ni-Al

Fe-Mn-Si
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Applications

(Courtesy: NDC Inc.)

Typical biomedical devices made of Nitinol
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Crystallography

The superelastic effect is due to the displacive,
diffusionless, reversible, solid-solid transformation between
an austenitic (highly structured) phase and a martensitic
(less structured) phase.

Examine in detail the Ni-Ti crystal:

Ni
Ti

Austenite (body-centered cubic crystal)
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Crystallography

The superelastic effect is due to the displacive,
diffusionless, reversible, solid-solid transformation between
an austenitic (highly structured) phase and a martensitic
(less structured) phase.

Examine in detail the Ni-Ti crystal:

Ni
Ti

Martensite (monoclinic crystal)
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Crystallography

The interface between austenite and martensite is called
the habit plane.

How does martensite grow inside an undistorted austenite
matrix?

austenite

martensite
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Crystallography

The interface between austenite and martensite is called
the habit plane.

How does martensite grow inside an undistorted austenite
matrix?

Austenite

M

Lattice distortion (incompatible!)
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Crystallography

The interface between austenite and martensite is called
the habit plane.

How does martensite grow inside an undistorted austenite
matrix?

Austenite

M

Single martensite with slip (irreversible process)
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Crystallography

The interface between austenite and martensite is called
the habit plane.

How does martensite grow inside an undistorted austenite
matrix?

Austenite

M1
M2
M1
M2

Twin martensite variants (reversible process)
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Crystallography

How does martensite grow under imposed shear-like
deformation?

austenite

austenite

1 11 2 12 2 2 1

Austenite initially transforms to twinned martensite, which,
in turn, gives way to single variant martensite (detwinning).
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Superelasticity

A

A <− M

M

A −> M1,2 M1,2 −> M

A

strain

st
re

ss

Microstructural interpretation of the superelastic effect
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Shape-memory effect
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Microstructural interpretation of shape-memory effect
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Material

Consider a thin-walled Nitinol tube, which is the starting
component for manufacturing various biomedical devices.

Composition: Ti 44.5 wt.%, Ni 55.5 wt.%

Heat-treatment at 485◦C in air (5 min), followed by
water-quenching to produce a microstructure that
enhances the superelastic properties.

Transformation temperatures:

As = − 6.36◦C , Af = 18.13◦C

Ms = − 51.55◦C , Mf = − 87.43◦C
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Material

� � � �

Optical micrograph of a portion of the cross section of a
thin-walled Nitinol tube (note the polycrystalline structure)
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Material

Nitinol, thin tube (as received)
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Texture

In polycrystalline solids, the overall mechanical response
may depend strongly on the preferred lattice orientation of
the crystals, i.e., on the texture of the polycrystal.

In superelastic materials, texture may affect the
mechanical behavior in two ways:

By controlling the phase transformation process (i.e.,
by enabling nucleation of certain variants and not
others).

By inducing anisotropy in the continuum-level elastic
response.

Texture measurements can be taken using X-ray or
electron diffractometry.
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Texture

Texture measurements are represented using
stereographic projections of the spherical poles
corresponding to the normal to a given crystal plane, when
the plane is assumed to pass through the center of the
sphere (pole figures).
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Texture

The tube manufacturing process induces primarily
〈111〉{110}-type sheet texture “wrapped” around the
cylindrical surface, such that the 〈111〉 austenite lattice
direction is aligned with the longitudinal axis of the tube.
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Texture

Pole figures for Nitinol tubes (R.D. horizontal, T.D. vertical)
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Experiments

25 mm

25 mm

25 mm

r = 1.5 mm
Test section

thickness = 0.20mm

outer radius = 2.15mm

Gripping sections

thickness = 0.37mm

outer radius = 2.32mm

Schematic illustration of the NiTi specimen (not to scale)
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Experiments
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Equivalent stress-strain plot showing repeatability of tension tests
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Experiments

Nitinol, thin tubes, loaded/unloaded in tension
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Experiments
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(a) Tension followed by torsion

��� ���  �!

"

#

tensile strain
shear strain

st
ra

in

$% &'( ) *

+

(b) Torsion followed by tension

,.- /.0

1

2

3.4 576
tensile strain
shear strain

st
ra

in

89 :;< = = >

? @.A B.C

D

E

tensile strain
shear strain

st
ra

in

(c) Simultaneous tension-torsion FG HIJ K K K L

Strain/time sequence for TYPE I, II, III loading
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Experiments

The experimental setup provided measurements of the
equivalent Cauchy (true) stress σeq versus the equivalent
Lagrangian strain εeq, namely

σeq =
√

σ2
t + 3σ2

s , εeq =

√

ε2
t +

4

3
ε2

s ,

where σt and σs denote the tensile and shearing stress,
while εt and εs denote the tensile and shearing strain.

Strain rates were imposed in the 10−5/s to 10−4/s were
used for both the tensile and torsional loading.
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Experiments
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Experiments

N itino l, pure torsion
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Experiments
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Experiments
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Experiments
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Experiments
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Closure

In superelastic materials, austenite-to-martensite
phase transformation occurs by nucleation of
martensite twins, followed by detwinning.

The stress-strain response is rich and complex,
especially under non-proportional loading.

The response to torsion defies the classical metal
plasticity paradigm.

The modeling of the mechanical response of
superelastic materials leads to a multiscale problem.

Martensite laminates, crystal grains, continuum
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Nomenclature

Nomenclature:

F : deformation gradient

E : Lagrangian strain tensor

U : Right stretch tensor

ε : Infinitesimal strain tensor

P : 1st (unsymmetric) Piola-Kirchhoff stress tensor

S : 2nd (symmetric) Piola-Kirchhoff stress tensor

σ : Infinitesimal stress tensor

Q : general rotation tensor

I : second-order identity tensor
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Modeling

Consider constitutive modeling at the crystal grain level.

The total deformation induced by the martensitic
transformation can be expressed in the form:

F = F1F2R3 ,

where

F1 : lattice deformation

F2 : twinning deformation

R3 : rigid rotation

Of the three deformation components, F1 is dominant.
SMA – p.35/108



Modeling

There are three basic modeling choices at the crystal grain
level:

Model the transformation of austenite to detwinned
martensite.

austenite

austenite

austenite 1
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Modeling

There are three basic modeling choices at the crystal grain
level:

Model the transformation of austenite to twinned
martensite.

austenite

austenite

austenite 1 11 2 12 2 2
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Modeling

There are three basic modeling choices at the crystal grain
level:

Model the transformation of austenite first to twinned
martensite, then to detwinned martensite.

austenite

austenite

austenite 11 11 2 12 2 2
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Modeling

Consider first modeling the transformation of austenite to
detwinned martensite. In the case of Ni-Ti (cubic to
monoclinic transformation), there are a total of 12
martensite “lattice correspondence variants”, i.e.,

F1,i = R(QiUQT
i ) , i = 1, . . . , 12 .

In the above polar decompositions, R is the rotation tensor,
U is the unique stretch tensor, and Qi are the 12 rotations
corresponding to the 12 ways in which a cube maps onto
itself.

The tensor U can be deduced from the crystallography of
the austenite-martensite transformation.
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Modeling

Consider next modeling the transformation of austenite to
twinned martensite.

In the case of Ni-Ti (cubic to monoclinic transformation),
one may expect up to 66x8 = 528 martensite “habit plane
variants”.

Compatibility requirements reduce this number to 192
feasible habit plane variants. These variants can be
obtained by an energy minimization method.

Of the 192 feasible habit plane variants, only 24 are
experimentally observed to be dominant.
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Modeling

In the case of a typical habit plane variant α, the
microscopic deformation gradient takes the form

F12,α = I + gmα ⊗ nα ,

where g is the trans-
formation displacement,
mα is the unit vector in the
transformation direction,
and nα is the outward unit
normal to the habit plane.

twinned martensite

habit plane

PSfrag replacements

gmα

nα
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Modeling

Proceed with modeling by analogy to the theory of
elastic-plastic materials.

A plastic (resp. phase-tranforming) material can be views
as an elastic material whose response is parametrized by
the plastic (resp. transformation) variables.

Two key differences:

Martensitic transformation is fully reversible.

Loading conditions in multi-surface plasticity are
determined per surface, while in martensitic
transformation they are cumulative.
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Modeling

Micromechanically-motivated constitutive assumptions:

1. Existence of a Lagrangian transformation strain Et

depending on the martensitic volume fractions

{ξα} =
{

(ξ1, ξ2, · · · , ξnv) |
nv∑

β=1

ξβ ≤ 1 , ξβ ≥ 0
}

,

such that Et = Êt ({ξα}), where nv stands for the
number of potentially present variants.

Homogeneity condition: Êt({0}) = 0.

Note the analogy (and contrast) with plasticity theory.
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Modeling

2. Admittance of a Helmholtz free energy Ψ = ρ0(ε− ηθ),
where Ψ = Ψ̂(E, {ξα}, θ). Here, ρ0 is the mass density,
ε is the internal energy per unit mass, η is the entropy,
and θ the absolute temperature.

Recall the local form of the energy equation

ρ0ε̇ = ρ0r − Divq0 + S · Ė ,

where r is the heat supply per unit mass and q0 the
referential heat flux vector.

Also recall the Clausius-Duhem inequality

ρ0η̇θ ≥ ρ0r − Divq0 +
q0 · Grad θ

θ
.
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Modeling

For any homothermal superelastic process,
(

S −
∂Ψ̂

∂E

)

· Ė−
nv∑

α=1

∂Ψ̂

∂ξα
· ξ̇α ≥ 0 .

Since E and {ξα} can be varied independently, a
standard process leads to

S =
∂Ψ̂

∂E
,

while the Clausius-Duhem inequality further implies
that

Ḋ =

nv∑

α=1

(−
∂Ψ̂

∂ξα
) ξ̇α ≥ 0 .
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Modeling

3. Existence of functions Ŷ f
α and Ŷ r

α in the form

Y f
α = Ŷ f

α (E, {ξβ}, θ) , Y r
α = Ŷ r

α (E, {ξβ}, θ)

associated with the forward and reverse transformation
of variant α, respectively, where Ŷ f

α < Ŷ r
α .

Y f
α = 0 ⇔ variant α active in forward transformation

Y r
α = 0 ⇔ variant α active in reverse transformation

Forward and reverse transformation active sets:

J f (E, θ) = {α | Ŷ f
α (E, {ξβ}, θ) = 0, ξα > 0} ,

J r(E, θ) = {α | Ŷ r
α (E, {ξβ}, θ) = 0, ξα > 0} .
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Modeling

(a)

(b)
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Modeling

Persistency of a forward-active variant α,

Ẏ f
α =

∂Ŷ f
α

∂E
· Ė−

∑

β∈J f

Qαβ ξ̇β = 0 ,

where Qf
αβ = −

∂Ŷ f
α

∂ξβ
are the components of the forward

coupling matrix (assumed invertible) which quantifies
the coupling between variants during forward transformation.

It follows that during forward transformation of variant α,

ξ̇α =
∑

β∈J f

Qf −1
βα

∂Ŷ f
β

∂E
· Ė .

This is a rate-type, rate-independent equation (note
connection with rate-independent plasticity).
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Modeling

4. Stipulate of forward and reverse transformation criteria.

From a state of a forward transformation (J f 6= ∅):

∑

α∈J f

W f
α

∂Ŷ f
α

∂E
·Ė







> 0 ⇔ forward transformation

= 0 ⇔ neutral forward transformation

< 0 ⇔ elastic unloading

.

From a state of a reverse transformation (J f = ∅, J r 6= ∅):

∑

α∈J r

W r
α

∂Ŷ r
α

∂E
·Ė







> 0 ⇔ elastic reloading

= 0 ⇔ neutral reverse transformation

< 0 ⇔ reverse transformation

.
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Modeling

To determine the weight function W f
α , note that during

forward transformation
∑

α∈J f

(−Y f
α −

∂Ψ̂

∂ξα
) ξ̇α ≥ 0 .

Recalling the equation for ξ̇α, it follows that
∑

α∈J f

∑

β∈J f

Qf −1
αβ (−Y f

β −
∂Ψ̂

∂ξβ
)
∂Ŷ f

α

∂E
· Ė ≥ 0 ,

which implies that

W f
α =

∑

β∈J f

Qf −1
αβ (−Y f

β −
∂Ψ̂

∂ξβ
) .

A similar analysis applies to W r
α.
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Modeling

Consider an alternative option: postulate a single forward
transformation function of the form

Y f = ‖ −
∂Ψ̂

∂ξα
‖q −Fc ,

where ‖(·)‖q denotes the standard vector q-norm.

PSfrag replacements

q = 1
q = 2
q = ∞

Note analogy to yield functions in plasticity theory.

Why use non-smooth transformation criteria?
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Modeling

How to incorporate microstructural information into the
crystal grain constitutive model?

Homogenize the kinematics and kinetics of the
microstructure over a representative referential volume
element (RVE) V that characterizes the physics of the
martensitic transformation.

austenite

austenite

austenite 1 11 2 12 2 2
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Modeling

“Descend” into the limiting case of infinitesimal
deformations and let the mechanical part of the Helmholtz
free energy be of the form

ψ(ε, {ξα}) =
nv+1∑

α=

ξα
1

2
(ε − ε

t
α) · C(ε − ε

t
α)

︸ ︷︷ ︸

single phases

+ψm({ξα})
︸ ︷︷ ︸

mixing

,

where C is the elasticity tensor (assumed phase-invariant).

Subsequently, write the mechanical part of the Gibbs free
energy of the mixture as

γ(σ, {ξα}) =
nv∑

α=1

1

2
σ · C−1

σ +
nv∑

α=1

ξασ · εt
α + . . .
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Modeling

Assume a spatially homogeneous stress σ
0 over the

ensemble and employ a Legendre transformation to write

sup
σ0

∫

V

[
−γ(σ0, {ξα}) + σ0 · ε

]
dV =

∫

V

ψR(ε, {ξα}) dV ,

where ψR is the Reuss (lower) bound to the mechanical
part of the free energy.

It follows from the above that the Reuss bound is

ψR(ε̄, {ξα}) =
1

2
(ε̄ −

nv∑

α=1

ξαε
t
α) · C(ε̄ −

nv∑

α=1

ξαε
t
α)

in terms of the volume-averaged strain ε̄ =
1

vol(V)

∫

V

ε dV .
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Modeling

Alternatively, assume a spatially homogeneous strain ε
0

over the ensemble and again homogenize the elastic part
of the Helmholtz free energy to find that

ψV (ε̄, {ξα}) =
1

2
(ε̄−

nv∑

α=1

ξαε
t
α)·C(ε̄−

nv∑

α=1

ξαε
t
α)−

1

2

nv∑

α=1

σ̃·ξαε
t
α ,

where σ̃ is the self-equilibrated zero-mean fluctuation
stress.

One may estimate the contribution of the fluctuation stress,
although the existing estimates are generally not very
accurate.
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Modeling

Motivated by the micromechanical model, let the Helmholtz
free energy be written as

Ψ = Ψ̂(E, {ξα}, θ) =

1

2

(
E −Et

)
· C
(
E −Et

)

︸ ︷︷ ︸

mechanical

+B(θ − θ0)
nv∑

α=1

ξα

︸ ︷︷ ︸

chemical

.

where Et is the cumulative transformation strain, B is a
chemical energy constant (latent heat of transformation),
and θ0 is the equilibrium temperature.

Note that the strains are moderate (typically, less than
6-10%).
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Modeling

The cummulative transformation strain is now defined as

Et =
nv∑

α=1

ξαE
t
α ,

where the variant transformation strain Et
α is given by

Et
α =

1

2
g(mα ⊗ nα + nα ⊗mα + gnα ⊗ nα) ,

in terms of the microscopic

deformation gradient

Fα = I + gmα ⊗ nα .

twinned martensite

n

habit plane

gm
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Modeling

Further, admit critical thermodynamic force-based
transformation functions

Y f
α = −

∂Ψ̂

∂ξα
−F c , Y r

α = −
∂Ψ̂

∂ξα
+ F c ,

to characterize forward and reverse transformation,
respectively.

Given the particular form of the Helmholtz free energy,

Y f
α = Ŷ f

α (E, {ξβ}, θ) = C
(
E−

nv∑

β=1

ξβE
t
β

)
· Et

α −
(
B(θ − θ0) + F c

)
,

Y r
α = Ŷ r

α (E, {ξβ}, θ) = C
(
E −

nv∑

β=1

ξβE
t
β

)
· Et

α −
(
B(θ − θ0) −F c

)
.
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Modeling

During elastic loading or forward transformation, the
loading conditions simplify to

∑

α∈J f

ξ̇α ≥ 0 ,

namely, the total production of martensite is non-negative.

Recalling further the form of the forward transformation
criterion, it follows that during elastic loading or forward
transformation

∑

α∈J f

(
−
∂Ψ̂

∂ξα
−F c

)
ξ̇α = 0 .

An analogous result applies to reverse transformation.
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Modeling

Note that here

∂2Ψ̂

∂ξα∂ξβ
= Qαβ = Et

α · CEt
β ,

where the nv × nv coupling matrix [Qαβ] is symmetric and
of rank at most 6. This implies that for nv > 6, the matrix
[Qαβ] is necessarily positive semi-definite.

Recalling again that

∑

α∈J f

(
−
∂Ψ̂

∂ξα
−F c

)
ξ̇α = 0 ,

it follows that the identification of active variants and
volume fractions can be cast as a constrained optimization
problem at fixed strain and temperature.
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Modeling

Specifically, in the case of forward transformation, the
martensitic content {ξα} satisfies

{ξα} = argmin
{ξγ}∈J f

Φf ,

subject to inequality constraints

−ξα ≤ 0 ,

nv∑

α=1

ξα ≤ 1 .

where the functional Φf is defined as

Φf = Ψ +
∑

α∈J f

F cξα ,

and may attain multiple minima. A similar conclusion
applies to reverse transformation for the functional
Φr = Ψ −

∑

α∈J r F cξα.
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Modeling

How to model detwinning?

The twinned and detwinned variants may coexist, so that

Ψ = Ψ̂(E, {ξhab
α , ξlat

β }, θ) =

1

2

(
E− Et

)
· C
(
E− Et

)
+B(θ − θ0)

nv∑

α=1

ξα ,

where now

Et =

nvh∑

α=1

ξhab
α Et

α +

nvl∑

β=1

ξlat
β Et

β .

In the above, nvh and and nvl denote the total number of
habit and lattice correspondence variants, respectively.
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Closure

Plasticity theory can be used as a guide toward the
development of superelastic constitutive models.

It is possible to motivate continuum formulations of
superelasticity using micromechanics.

It is sensible to consolidate the loading criteria, while
keeping the transformation criteria separate.

Under certain assumptions, superelasticity can be cast
as a constraint minimization problem.

The role of interaction energy between variants
remains an open question.
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Algorithmic treatment

Within the finite element paradigm, the algorithmic problem
for a single crystal is set up as follows:

“Given the state at time tn, and the total displacement un+1

at time tn+1, determine the state at time tn+1.”

The preceding problem is iteratively nested inside the
global momentum balance problem.

balance
momentum
global

(Gauss pt.)

material

assemble

local state

global state

i−th iterate

i−th iterate

PSfrag replacements

u
(i)
n+1

i← i + 1
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Algorithmic treatment

Two potential approaches:

Unified approach

Determine the phase state by solving a constrained
optimization problem.

Unified treatment of transforming and non-transforming
states

Operator-split approach

Analogy with computational plasticity for
rate-independent materials

Different treatment of transforming and
non-transforming states
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Unified approach

Treat elastic loading/forward transformation in a unified
manner.

PSfrag replacementsσeq

εeq
0

ξ̄l =
∑

ξα

ξ̄u = 1

Express the constraint conditions as

−ξα ≤ 0 , ξ̄l −
nv∑

α=1

ξα ≤ 0 , ξ̄u ≤ 1 ,

where ξ̄l and ξ̄u are lower and upper values of the total
martensitic volume fraction.
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Unified approach

Treat elastic unloading/reverse transformation in a unified
manner.

PSfrag replacementsσeq

εeq
0

ξ̄l = 0

ξ̄u =
∑

ξα

Express the constraint conditions as

−ξα ≤ 0 ,
nv∑

α=1

ξα − ξ̄u ≤ 0 , 0 ≤ ξ̄l ,

where ξ̄l and ξ̄u are lower and upper values of the total
martensitic volume fraction.
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Unified approach

���
���

������

���
���

Forward transformation Reverse transformation

The polytope constraints for nv = 3
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Unified approach

Recall that the forward transformation problem can be cast
in the form

{ξα} = argmin
{ξγ}∈J f

Φf ,

subject to the preceding polytope constraints.

Introduce Lagrange multipliers {λα, α = 1, . . . , nv}, λl, and
λu, and write

∂Φf

∂ξα
+ λα + λl − λu = 0 ,

where

nv∑

α=1

λα(−ξα) + λl(ξ̄l −
nv∑

α=1

ξα) + λu(
nv∑

α=1

ξα − ξ̄u) = 0 .
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Unified approach

Three key algorithmic tasks:

Identify the state as “loading” (forward transforming) or
“unloading” (reverse transforming).

Identify the set C of potentially active variants.

Select up to 6 such variants from the set of all nv habit
plane variants.

Identify the variants from the set C that are active.

All three tasks are deformation-dependent (albeit
history-independent) and generally need to be performed
in each loading step!
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Unified approach

Recall that the functional Φf is defined as

Φf =
1

2

(
E −Et

)
· C
(
E −Et

)
B(θ − θ0)

nv∑

α=1

ξα +
∑

α∈J f

F cξα ,

hence is quadratic in {ξα}, and the 24 × 24 Hessian
∂2Φf

∂ξα∂ξβ
is at most of rank 6. This leads to a semi-definite quadratic
programming problem.

To “relax” this problem, identify a set C of 6 candidate
active variants at each step.

Subsequently, a standard active set strategy of
positive-definite quadratic programming is applied to
determine the active variants and volume fractions.
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Unified approach

There are several ways to identify a “reasonable” set C of 6
candidate active variants. One possibility is to first
determine the extrema of Φf with respect to each variant
separately, i.e., solve

Ŷ f
α (E, ξα, θ) =

∂Φ̂f

∂ξα
= 0 ,

for each ξα, α = 1, . . . , 24. Subsequently, select the 6
variants that correspond to the lowest values of
Φf = Φ̂f (E, ξα, θ).

Alternatively, one may perform a pair-wise minimization to
determine 3 pairs of potentially active variants, as
motivated by experiments.

The set of active variants depends crucially on the load.
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Unified approach

Given the set C of candidate variants, express the discrete
counterpart of the first-order conditions

∂Φf

∂ξα
+ λα + λl − λu = 0 ,

nv∑

α=1

λα(−ξα) + λl(ξ̄l −
nv∑

α=1

ξα) + λu(

nv∑

α=1

ξα − ξ̄u) = 0

in matrix form as

[Q][ξn+1] + [Πn+1]
T [λn+1] = [cn+1] ,

[Πn+1][ξn+1] = [hn+1] .

This system possesses a unique solution, as [Q] is
positive-definite and [Πn+1] has full row-rank.
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Unified approach

Use an active set strategy starting from any feasible initial
guess of volume fractions and active variants (working set).

1. Solve the first-order equations and determine new
values of [ξn+1] and [λn+1].

2. If one or more of the inactive constraints are violated,
then add the most offending constraint to the working
set and go to step 1.

3. If one or more of the Lagrange multipliers become
negative, then drop from the working set the constraint
that corresponds to the lowest value over all multipliers
and go to step 1.

Slow, but reliable!
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Unified approach

The discrete counterparts of the loading criteria from a
forward transformation state at t = tn+1 are

∑

α∈C

(ξf
α,n+1−ξα,n)







> 0 ⇔ forward transformation

= 0 and λl = 0 ⇔ neutral forward transformation

= 0 and λl > 0 ⇔ elastic unloading

,

where ξf
α,n+1 is calculated by constrained minimization of Φf .

Note that the latter two conditions are modified in order to
account for the explicit enforcement of the constraint
ξ̄l −

∑

α∈C ξα ≤ 0.
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Unified approach

The discrete counterparts of the loading criteria from a
reverse transformation state at t = tn+1 are

∑

α∈C

(ξr
α,n+1−ξα,n)







< 0 ⇔ reverse transformation

= 0 and λu = 0 ⇔ neutral reverse transformation

= 0 and λu > 0 ⇔ elastic reloading

,

where ξr
α,n+1 is calculated by constrained minimization of Φr.

Note that the first two conditions are modified in order to
account for the explicit enforcement of the constraint
∑

α∈C ξα − ξ̄u ≤ 0.
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Unified approach

In the unified approach, there is no distinction in the
treatment of elastic or transforming states. This implies
that one only needs to check whether the state is “forward”
or “reverse”.

Use a flag to handle the characterization (set initially to
“forward”). and resolve all possible combinations of
forward/reverse loading:

H
H

H
H

H
HH

∆ξr
n

∆ξ
f
n

+ 0

− !flag ‘reverse’

0 ‘forward’ flag
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Unified approach

The unified approach is also applicable for problems that
lead to non-linear programming. For example, assume

Ψ =
1

2

(
E − Et

)
· C̄
(
E − Et

)
+ B(θ − θ0)

nv∑

α=1

ξα ,

where, using the rule of mixtures,

C̄ =

(

1 −
nv∑

α=1

ξα

)

Ca +
nv∑

α=1

Cm .

Use non-linear programming with active set strategy or
reduce the problem to one of quadratic programming by
using time-lagging estimates of C̄.
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Operator-split approach

Examine the operator-split approach in connection with the
preceding model.

Given the state at tn (i.e., {ξβ,n}), the temperature θn+1,
and the i−th iterate of the displacement u

(i)
n+1:

1. Assume that the total strain E
(i)
n+1 is elastic, i.e., there is

no phase forward transformation.

2a. If Ŷ f
α (E

(i)
n+1, {ξβ,n}, θn+1) < 0 for all variants α, then the

process in (tn, tn+1] is elastic.

2b. If Ŷ f
α (E

(i)
n+1, {ξβ,n}, θn+1) ≥ 0 for some variant(s) α, then

there is some phase transformation.
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Operator-split approach

As in the unified approach, one again needs to determine:

The set C of potentially active variants.

The variants from the set C that are active.

The operator-split approach is popular in computational
plasticity because of the simplicity of the elastic predictor
and the physical interpretation of the plastic corrector.

Are these attractive features preserved in the case of
micromechanically motivated phase transition models?
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Operator-split approach

The operator-split approach has two complications:

1. It is not readily obvious how to effect the “plastic” (i.e.,
transformation) correction. It is sometimes assumed
that

ξ̇α = κ
∂Y f

α

∂ξα
,

which corresponds to an “associated” flow rule.

PSfrag replacements

Y
f
1 = 0

Y 2
f = 0

There is no constitutive justification for this assumption!
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Operator-split approach

2. The evolution of the variants is subject to the polytope
constraints.

 

PSfrag replacements

Y f = 0

Y f > 0

ξ = 0

ξ < 0

One needs to perform constrained projections in
multi-dimensional space. In some cases, the
projections indicate unsuitable selection of potentially
active variants.
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Polycrystal modeling

Texture can potentially play a pivotal role in the mechanical
response of polycrystalline superelastic alloys.

Two ways to model the textured polycrystal structure:

Direct simulation
Resolve the polycrystal structure using individual finite
elements. This is a simple, but potentially expensive
approach.

Two-scale analysis

Solve fine-scale boundary-value problem on a
representative domain and extract volume-averaged
stress to be used in a continuum-level simulation. This
approach can radically reduce the computational cost.
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Polycrystal modeling

To conduct either direct simulation or two-scale analysis,
one needs to utilize the texture information.

As an example, consider the Nitinol tubes described
earlier. Here, the manufacturing process induces primarily
〈111〉{110}-type sheet texture “wrapped” around the
cylindrical surface, such that the 〈111〉 austenite lattice
direction is aligned with the longitudinal axis of the tube.
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Polycrystal modeling

Pole figures for Nitinol tubes (R.D. horizontal, T.D. vertical)
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Polycrystal modeling

Generally, pole figure data are directly processed by the
software that handles crystallographic data acquisition.

Relevant software: BEARTEX, LaboTex, popLA, etc.

Typical software output:

ω
(1)
1 ω

(1)
2 ω

(1)
3 q(1)

ω
(2)
1 ω

(2)
2 ω

(2)
3 q(2)

· · · · · · · · · · · ·

,

where ω(i)
I , I = 1, 2, 3, are orientation-defining angles for

the i-th bin and q(i) is the corresponding diffraction
intensity.
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Polycrystal modeling
PSfrag replacements

ω1

ω2

ω3

x
y

z

p

p′

qq′ = q′′

q′′′ = y

r = r′

r′′ = z

Matthies-Roe angle convention (p,q, r) → (x, y, z)
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Polycrystal modeling

Also, recall that the austenite is wrapped around the tube.

PSfrag replacements ω0

p

q

r

This induces an initial rotation ω0 of the cubic crystals
relative to the r axis.
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Polycrystal modeling

In summary, the total rotation Q that characterizes the
texture can be expressed as

Q = Q3Q2Q1Q0 ,

where

Q0: rotation by ω0 relative to r ,
Q1: rotation by ω1 relative to r ,
Q2: rotation by ω2 relative to q′ ,
Q3: rotation by ω2 relative to r′′ .

To obtain a matrix representation of the rotation, recall the
Rodrigues formula for rotation in {p,q, r} by ω with respect
to p:

Qr = p ⊗ p + cosω(q⊗ q + r ⊗ r) − sin θ(q⊗ r − r ⊗ q) .
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Polycrystal modeling

For any given grain, the angles ωI , I = 1, 2, 3, are picked
from the pole figure data using a random processes
weighted by the diffraction intensities.

The angle ω0 is computed directly as a function of the
location of the grain on the tube.

Once the cumulative rotation Q is known, the habit plane
transformation strains {Et

α} of a typical crystal grain are
expressed as

Et
a,tex = QEt

αQ
T ,

where Et
α are the transformation strains relative to the

austenite (cubic) frame.

SMA – p.89/108



Polycrystal modeling

The direct simulation approach is straightforward.

The two-scale approach requires the solution of a
boundary-value problem at each Gauss point:

Use the macro-scale deformation as input for the fine-scale
problem, determine the mean stress, and use it to define
the constitutive behavior in the macro-scale problem.
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Polycrystal modeling

Use Taylor assumption, i.e., impose constant deformation
gradient field F̄ = F in the fine-scale problem.

Recalling the Hill-Mandel averaging theorem, compute and
output the mean 1st Piola-Kirchhoff stress P̄.

Interesting issues:

Size of the fine-scale problem (convergence of the
microstructure)

Implicit global solution options (Newton’s method and
its variants)

Other consistent averaging options
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Numerical simulations

Material parameters:

Austenite Young’s modulus : E = 38.0 GPa

Martensite Young’s modulus : E = 10.0 GPa

Poisson’s ratio : ν = 0.3

Chemical energy constant : B = 0.607 MPa/◦C

Temperature : θ − θ0 = 22.3◦C

Critical force : F c = 7.5 MPa.

The crystallographic vectors are taken to have components

[n] = [−0.88888, 0.21523, 0.40443]T

[m] = [0.43448, 0.75743, 0.48737]T ,

relative to the austenite lattice, while g = 0.13078.
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations

cut

original tube fine mesh

Schematic of stent manufacturing
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Numerical simulations
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Closure

Superelasticity may be algorithmically tackled either as
a multi-phase elasticity problem or as a plasticity-like
problem.

The multi-phase elasticity problem (unified approach)
makes no algorithmic distinction between elastic
loading and forward transformation.

The plasticity-like problem introduces an element of
new physics in the flow-like rule for the evolution of the
variant volume fractions.

Texture can be incorporated either via direct simulation
or by two-scale modeling.

A weighted random selection process can be used to
simulate the texture distribution.
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