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Abstract
A continuum theory of surface growth in deformable bodies is presented. The

theory employs a decomposition of the deformation and growth processes, which leads
to a well-posed set of governing equations. It is argued that an evolving reference
configuration is required to track the material points in the body. The balance laws
are formulated with respect to a non-inertial frame of reference, which is used to track
the motion of the body. A one-dimensional example problem is included to showcase
the predictive capacity of the theory.
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A Continuum Theory of Surface Growth

1 Introduction

Continua may undergo volumetric or surface growth. The two extreme cases of the former

occur when the density changes at constant volume or when the volume changes at constant

density. In either case, the effects are strictly volumetric, in the sense that all growth is

effected by changes to the bulk (as opposed to the surface) of the body. Surface growth

occurs when material is added to or removed from the surface of the body. To date,

the literature of growth mechanics is overwhelmingly concerned with volumetric growth

[1, 2, 3, 4, 5].

Surface growth has received very little attention despite the fact that it plays an im-

portant role in the overall growth of hard tissues (e.g., teeth, shells) and in the motility

of cells. Motility may be effected in certain classes of cells by “treadmilling”, which is

the addition (resp. removal) of actin monomers at the leading (resp. trailing) edge of the

cell, while the bulk of the cell adheres to a substrate. The net effect of treadmilling is

the apparent motion of the cell. One-dimensional continuum models of cell motility are

proposed by Gracheva and Othmer [6] and Larripa and Mogilner [7]. A two-dimensional

model of the same process is suggested by Rubinstein et al. [8]. While all these models

essentially concern surface growth of the actin network, no attempt is made by the authors

to frame their approaches within a general theory of surface growth. On the continuum

front, Skalak et al. [9, 10] describe models of the kinematics of surface growth for biological

tissues without formulating any corresponding balance laws. A preliminary attempt to re-

late surface growth kinematics to kinetics is contained in the work of Athesian [11], which

also recognizes the implications of surface growth on the nature of reference configurations.

A review of surface growth kinematics is contained in [12, Section 2].

The objective of this paper is to develop a general three-dimensional continuum theory

that can be applied to a broad range of surface growth problems. The three salient features

of the proposed theory are: the kinematic representation of surface growth by means of a

surface growth velocity field; the decomposition of the motion into growth-free and growth-

only parts; and the formulation of the balance laws with respect to a non-inertial frame

that depends on the kinematics of growth. As formulated, the theory enables tracking

of the deformation relative to an evolving reference configuration which accounts in an

incremental manner for the addition and removal of material through the surface. A

one-dimensional example is also included to demonstrate the features of the theory in an

analytically tractable setting.
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The paper is organized in two major sections: the first (Section 2) concerns the devel-

opment of the theory, including the kinematic description and the balance laws, while the

second (Section 3) describes a one-dimensional initial/boundary-value problem and docu-

ments the main properties of its solution. Concluding remarks are offered in Section 4.

2 Theory

2.1 Kinematics

Let the body Bt be defined as a collection of particles at time t. Unlike conventional

continua, the explicit time designation is essential here due to the possibility of growth.

Each material particle P at time t is mapped into the Euclidean point space E3 by way of

χ̄t : (P, t) ∈ Bt × R 7→ E3. The map χ̄t will be refered to as the configuration mapping of

Bt at time t. Each point X ∈ E3 occupied by a particle at time t is uniquely associated

with a vector X relative to a fixed origin O in the Euclidean vector space E3. The image

of χ̄t, denoted by Rt, is the configuration of the body at time t, and is assumed to be open

and to possess a smooth orientable boundary ∂Rt with outward unit normal N (X, t).

It is customary in continuum mechanics to describe the motion of a solid body relative

to a fixed reference configuration, frequently taken to be the configuration of the body at

some fixed time t0. This poses a challenge in the present context, since, when undergoing

surface growth, the body may include particles at time t that did not exist at some earlier

time t0. Conversely, the body at time t may have resorbed, such that material points

at time t0 may no longer be in existence at time t. The difficulty in considering a time-

varying set of material particles is dealt with here by continuously updating the reference

configuration and decoupling surface growth from pure deformation by imposing surface

growth on an intermediate configuration induced by pure deformation. To this end, define

a deformation map χd : Rτ × R 7→ E3, which takes points of the reference configuration

Rτ at time τ to an intermediate configuration R̃τ+t at time τ + t, such that

x̃ = χd (X, t; τ) = χτ
d (X, t) . (1)

The deformation map χτ
d is assumed to be invertible for a fixed t and characterizes the

deformation of the body at time τ + t relative to the configuration at time τ by completely

ignoring any surface growth processes in the time interval (τ, τ + t]. Note that χd depends

on both τ and t, albeit in distinct manners. Indeed, the former identifies the time at which

the reference configuration is defined, while the latter denotes the advancement of time to
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the current configuration. In conventional continuum mechanics, it is customary to not

include in the argument list of the motion the time at which the reference configuration

is defined. This practice is not followed here, owing to the fact that, unlike conventional

continuum mechanics, the reference configuration is evolving with time. The notational

convention adopted for the argument list of χd in (1)1 is intended to underline that the

variable(s) to the left of the semicolon may only be defined after the variable(s) to the

right. The velocity vd associated with the deformation map can be defined on R̃τ+t at

time τ + t as

vd =
∂χd (X, t; τ)

∂t
. (2)

The motion χd is clearly material for all particles that are persistently in existence during

the time interval (τ, τ + t].

To account for surface growth, define a growth map χg : ∂R̃τ+t 7→ M2 from the

boundary of the intermediate configuration to a two-dimensional manifold M2, such that

the position vector of any boundary point of the current configuration Rτ+t at time τ + t

can be expressed as

x = χg (x̃; τ, t) = χτ,t
g (x̃) . (3)

The growth map χτ+t
g is assumed to be a local diffeomorphism between the manifolds

∂R̃τ+t and ∂Rτ+t. Here, the map χτ,t
g fully characterizes the growth process in the time

interval (τ, τ+t]. The map χg is generally not material, as it merely tracks the evolution of

the boundary of the body due to surface growth. It is useful in the ensuing developments

to define a mean rate of growth vg on ∂R̃τ+t during the time interval (τ, τ + t] as

vg =
1
t
(x− x̃) =

1
t

(
χτ,t
g (x̃)− x̃

)
. (4)

The normal component vg · ñ of the growth velocity quantifies the rate at which material

is added (vg · ñ > 0) or removed (vg · ñ < 0) at the surface ∂R̃τ+t. No surface growth (or

resorption) takes place when vg · ñ = 0. Here, ñ denotes the outward unit normal to the

surface ∂R̃τ+t.

Taking into account (1) and (3), the apparent motion χa : ∂Rτ × R 7→ M2 of points

on the boundary ∂Rτ is

χa = χτ,t
g ◦ χτ

d . (5)

Once the boundary ∂Rτ+t is determined, the region Rτ+t occupied by the body at time

τ + t is defined by

Rτ+t = int
(
∂Rτ+t

)
, (6)
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where “int” denotes the interior of an orientable surface. The regions ∂R̃τ+t and ∂Rτ+t

defined by means of the decomposition (5) are depicted in Figure 1.

The decomposition (5) is an essential feature of the proposed theory. Indeed, this

decomposition enables the definition of the region Rτ+t for bodies undergoing surface

growth. As will be established later in this section, the decomposition (5) also permits

the distinction between growth regions and material regions in the time interval (τ, τ +

t]. Note that the order of the composition of χg and χd is important in the ensuing

developments. This is because admitting that the body first undergoes a pure deformation

followed by growth enables the definition of the maps χd and χg on ∂Rτ and ∂R̃τ+t, which

are simple to motivate. Specifically, one may take χd to apply to the body in (τ, τ + t] by

assuming that growth is suppressed. This is followed by χg, which effects all surface growth

without deformation. The alternative of imposing surface growth first on the configuration

∂Rτ , while not in any sense erroneous, is conceptually less appealing. Indeed, if surface

growth/resorption were to be effected first, then boundary conditions would need to be

enforced on material points that come to existence (or reach the boundary of the body)

simultaneously with the application of these boundary conditions.

The preceding development depends crucially on the elapsed time t between the ref-

erence and the current configuration. Unlike conventional continuum mechanics, some

restrictions need to be placed on the magnitude of t. Specifically, t should be much smaller

than the characteristic growth time tτc , defined as

tτc =
Lτ

‖vg‖∂R̃τ+t
, (7)

where Lτ is a characteristic measure of length for the reference configuration, defined as

Lτ = min (Lτ1 , L
τ
2 , L

τ
3) ,

by means of appropriately chosen characteristic lengths Lτi , i = 1, 2, 3, for each spatial

dimension. Also, ‖ · ‖∂R̃τ+t in (7) denotes the L2-norm on ∂R̃τ+t. This restriction ensures

that some of the particles in Rτ survive in Rτ+t, therefore the deformation map χd is

well-defined. Moreover, t should be small enough so that the sign of vg · ñ does not change

between times τ and τ + t when tracking any point x̃ ∈ ∂R̃τ+t associated with a given

point X in the reference configuration. This restriction guarantees that the time resolu-

tion is sufficiently fine to capture all growth/resorption processes within the time interval.

Lastly, t should be small enough for the continuous interaction between deformation and

surface growth to be satisfactorily represented in (τ, τ + t] by the composition of χτ
d and

5 Version: March 22, 2010, 11:34



A Continuum Theory of Surface Growth

χτ,t
g in (5). A lower bound for t is provided by requiring that the total linear growth in

(τ, τ + t] exceed the characteristic length of a typical molecular constituent of the growing

material (e.g., the length of an actin monomer). This restriction underlines the discrete

nature of surface growth physics.

The foregoing kinematic development implies that the current configuration Rτ+t is

comprised of materials occupying two disjoint open sets in E3: a material region Mτ+t

consisting of material particles at τ + t that also existed at time τ , and a growth region

Gτ+t, none of the material particles of which existed at time τ . In addition, define a surface

στ+t, which corresponds to the interface between the material and growth regions, as

στ+t = Mτ+t ∩ Gτ+t
. (8)

Now, the current configuration may be expressed mathematically as

Rτ+t = Mτ+t ∪ Gτ+t ∪ στ+t . (9)

The ablated region Aτ+t at time τ + t relative to time τ is also readily determined as

Aτ+t = R̃τ+t \ Rτ+t . (10)

It is clear that the growth region Gτ+t needs to be endowed with density, velocity and

deformation information at time τ + t. The preceding fields are already defined on the

interface στ+t and will now be extended to the domain of Gτ+t. Generally, the density of

the material in the growth region may be different from the density of the original mate-

rial, hence it is not necessary to require continuity of ρ across στ+t. In case the physical

process of growth necessitates continuity, then a smooth extension of ρ from the boundary

region στ+t to the open set Gτ+t can be effected. In the context of Sobolev spaces, such

an extension can be formally shown to exist under certain conditions on the smoothness of

the boundary and the distribution of ρ on στ+t. For instance, it is known that a constant

ρ on στ+t can be smoothly extended to Gτ+t using a version of the classical trace theorem

[13, Theorem 5.6]. Likewise, smooth extensions from non-constant fields on στ+t to the

full boundary ∂Gτ+t of Gτ+t have been constructed for specific geometries of Gτ+t [14,

Lemma A.1]. Once a smooth ρ is defined throughout ∂Gτ+t, the classical trace theorem

[15, Theorem 1.5.1.2] guarantees the existence of a smooth ρ in Gτ+t. An alternative con-

structive approach for polynomial extensions is discussed in [16]. Non-polynomial smooth

extensions can be obtained by formulating a mixed elliptic boundary-value problem in

Gτ+t with Dirichlet boundary conditions on στ+t and homogeneous Neumann boundary

conditions elsewhere.
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The extension of the deformation gradient into Gτ+t presents an obvious challenge.

Indeed, the deformation gradient, by definition, is taken relative to a reference configuration

and, in conventional continuum mechanics, this configuration is common to all material

points at a given time. Here, such a deformation gradient cannot be defined, since the

particles in Gτ+t did not come into existence until after time τ . Therefore, by necessity,

the deformation gradient at time τ + t is written relative to multiple configurations. In

particular, the deformation gradient inMτ+t may be defined by concession relative to Rτ ,

while in Gτ+t it can only be defined relative to Gτ+t itself, hence it is equal to the identity

tensor in this region. As a result, the deformation gradient is not uniquely defined on the

interface στ+t between Mτ+t and Gτ+t. In summary, one may write

Fτ+t
τ =



∂χτ
d

∂X
on Mτ+t

I on Gτ+t

undefined on Aτ+t

undefined on στ+t

. (11)

Clearly, the calculation of the deformation gradient for any newly formed material particle

is performed relative to the position occupied by that material particle at or after the time

of its creation. The latter may vary for different material particle in the body.

Extensions of other kinematic quantities from στ+t to Gτ+t can be effected, as argued

for the case of the mass density. However, different continuity assumptions may be required

depending on the nature of each quantity. For instance, the velocity vd should be extended

continuously from στ+t to Gτ+t to ensure that the growth region remains attached to the

rest of the body along στ+t.

The kinematic model defined herein includes as a special case the non-growing deform-

ing continuum, which corresponds to the case of χg being the identity map on ∂R̃τ+t and

χd being a non-trivial map on ∂Rτ . Likewise, a growing rigid continuum corresponds to

the case of χg being a non-trivial map on ∂R̃τ+t and χd being a global rotation map on

Rτ . In the former case, the motion of the body is purely material, while in the latter the

(apparent) motion is exclusively due to the addition (resp. removal) of material points

to (resp. from) the surface of the body. As already argued, the meaning of a reference

configuration is substantially altered in the presence of surface growth. For instance, in

the case of pure growth, while the body is experiencing a shape-altering “motion”, it never

actually leaves its reference configuration.
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2.2 Balance Laws

Balance laws are defined relative to a given frame of reference. Following Truesdell and

Toupin [17, Sections 196-197], a frame of reference is termed inertial if one may express

Euler’s two laws relative to it in the canonical form

Ġ = F , ḢO = MO . (12)

Here, G is the linear momentum of the body (or any part of it), F is the resultant external

force, HO is the angular momentum about a fixed point O, and MO is the resultant moment

of the external forces about the point O. When using a non-inertial frame, material time

derivatives on the left-hand sides of the two laws in (12) are replaced by frame-specific time

derivatives and additional external forces are included on the right-hand sides to account

for the flow of momenta across non-material boundaries.

For the purposes of this paper, a non-inertial frame of reference is employed to formulate

the balance laws. In particular, the frame of reference has a motion that is specified

independently of the body, via the velocity vf (x, t; τ). The goal is to have the frame of

reference track the apparent motion of the body, as described by (5), including the effects

of both deformation and growth. To this end, recall that the particle velocity in R̃τ+t with

respect to any fixed frame is equal to vd. The frame velocity vf is chosen on the boundary

∂R̃τ+t such that

(vf − vd) · ñ = vg · ñ . (13)

This ensures that the non-inertial frame tracks the evolving boundary of the body, in the

sense that the coordinates of this boundary relative to the moving frame remain fixed.

The condition in (13) implies that there is no restriction on the tangential component

of vf . Likewise, the extension of vf to R̃τ+t is effected by appealing to the standard trace

theorem. No physical interpretation is assigned to vf in the interior of the body, beyond

the fact that it represents the velocity of a non-inertial frame attached to the growing

boundary.

A global statement of balance of mass relative to the inertial frame can be readily

derived by recalling the identity

d

dt

∫
P̃
ρ dv =

∂

∂t

∫
P̃
ρ dv +

∫
∂P̃
ρvd · ñ da , (14)

where
d

dt
denotes the material time derivative and P̃ ⊂ R̃τ+t is an arbitrary fixed region

of the body with boundary ∂P̃. A corresponding identity can be similarly derived for the
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rate of change of mass relative to the non-inertial frame as

df
dt

∫
P̃f
ρ dvf =

∂

∂t

∫
P̃f
ρ dvf +

∫
∂P̃f

ρvf · ñ daf , (15)

in an arbitrary fixed region P̃f ⊂ R̃τ+t with boundary ∂P̃f . Here,
df
dt

denotes the time

derivative keeping the coordinates of the non-inertial frame fixed. Recalling the identities

in (14) and (15), setting P̃f = P̃, and imposing conservation of mass in the material region

P̃, leads to

df
dt

∫
P̃
ρ dv =

∫
∂P̃
ρ (vf − vd) · ñ da , (16)

which is the desired integral statement of mass balance. A local form may be deduced from

(16) by using standard versions of the transport, divergence, and localization theorems, and

reads

dfρ

dt
+ ρ div vd = grad ρ · (vf − vd) . (17)

The preceding derivation follows closely the steps used in obtaining the equations of motion

in Arbitrary Lagrangian-Eulerian formulations of conventional continuum mechanics [18].

In the special case P = R̃τ+t, namely when considering the complete body in the

intermediate configuration, the total rate of change of mass M is given by

dfM

dt
=

df
dt

∫
R̃τ+t

ρ dv =
∫
∂R̃τ+t

ρvg · ñ da , (18)

where use is made of (13) and (16).

Statements for the balance of linear and angular momentum in the growing body can

be derived in complete analogy to the derivation of mass balance. For linear momentum,

the integral statement of balance takes the form

df
dt

∫
P̃
ρvd dv =

∫
P̃
ρb dv +

∫
∂P̃

t da+
∫
∂P̃
ρvd [(vf − vd) · ñ] da , (19)

where b is the body force per unit mass and t the surface traction of ∂P̃. The corresponding

local form of linear momentum balance is

ρ
dfvd
dt

= ρb + div T + (grad vd)ρ (vf − vd) , (20)

where T is the Cauchy stress tensor. Again, for the case P̃ = R̃τ+t, one may express the

rate of change of linear momentum for the whole body as

df
dt

∫
R̃τ+t

ρvd dv =
∫
R̃τ+t

ρb dv +
∫
∂R̃τ+t

t da+
∫
∂R̃τ+t

ρvd (vg · ñ) da . (21)

9 Version: March 22, 2010, 11:34



A Continuum Theory of Surface Growth

Angular momentum balance for the growing body can be expressed in the non-inertial

frame as

df
dt

∫
P̃

x× ρv dv =∫
P̃

x× ρb dv +
∫
P̃

(
e
[
TT
]

+ x× div T
)
dv +

∫
P̃

div
(
(x× ρvd)⊗ (vf − vd)

)
dv , (22)

where e [A] denotes the alternator tensor acting on a second-order tensor A. Expanding

the left-hand side of (22) and taking into account (17) and (20) leads to∫
P̃

dfx
dt
× ρvd dv =

∫
P̃

(
e
[
TT
]

+ vf × ρvd
)
dv . (23)

Since
dfx
dt

= vf , balance of angular momentum yields the usual symmetry condition for

the Cauchy stress tensor T.

The Cauchy stress T is defined everywhere in the intermediate configuration at time

τ + t, including the growth region that has come into existence by time τ (i.e., the growth

region that existed by the end of the previous time interval). In this region, the stress at

time τ + t may depend on the deformation gradient relative to the configuration at τ , as

well as on other variables.

3 An Initial/Boundary-Value Problem

3.1 Problem formulation

The strong form of the surface growth problem may be stated as follows: determine the

density ρ(x̃, t; τ) : R̃τ+t×I 7→ R and displacement u(x̃, t; τ) : R̃τ+t×I 7→ R3 that satisfy

(17) and (20), subject to the initial conditions

ρ(x̃, 0; τ) = ρ0(X) in Rτ ,

u(x̃, 0; τ) = u0(X) in Rτ ,

vd(x̃, 0; τ) = v0(X) in Rτ ,

(24)

the boundary conditions

u = ū(x̃, t; τ) on Γ̃u × I ,

t = t̄(x̃, t; τ) on Γ̃q × I ,
(25)

and the extensions of ρ, u, and vd into the growth region G as formulated in Section 2.1. In

the above, I is the time interval (τ, T ], where T is the terminal time of the interval. Also, the
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domains of the Dirichlet and Neumann boundary conditions (25) satisfy Γ̃u
⋃

Γ̃q = ∂R̃τ+t.

It is emphasized here that the frame velocity vf is assumed to be known throughout the

domain occupied by the body in its intermediate configuration.

3.2 A One-Dimensional Example

Consider a one-dimensional continuum lying along the X-axis, such that R0 = {X ∈ E1 |
A ≤ X ≤ B}, with the body deforming and growing over the time interval (0, t1] with no

body force. Dirichlet boundary conditions that are linear in time are assumed at both end

points, namely

u(A, t) = v̄At , u(B, t) = v̄Bt , (26)

hence

u(A, t1) = ūA = v̄At1 , u(B, t1) = ūB = v̄Bt1 . (27)

It follows that the positions of the boundary points in the intermediate configuration are

x̃(A, t1) = A+ ūA = ã , x̃(B, t1) = B + ūB = b̃ . (28)

At the same time, the body is experiencing surface growth, with growth rates vg(A) = v̄gA

and vg(B) = v̄gB that are assumed constant over the time interval (0, t1]. The initial

conditions for the problem are that the mass density at time τ = 0 is homogeneous and

equal to ρ0, while the initial displacement u0 and velocity v0 are equal to zero. In this case,

and for a given frame velocity vf , there are two balance equations (corresponding to mass

and linear momentum) and two unknowns, namely vd and ρ.

The frame velocity specified here is consistent with the condition in (13), which, in the

present case, reduces to vg = vf − vd at the two boundary points. This implies that the

boundary velocities of the frame are specified and equal to

vf (A) = v̄A + v̄gA , vf (B) = v̄B + v̄gB . (29)

A smooth extension of the frame velocity from the boundary to the interior of the domain

can be constructed by linear interpolation, such that

vf = vf0 + vf1Xf , (30)

where, using (27) and (29),

vf0 =
1

B −A

((
v̄gA +

ūA
t1

)
B −

(
v̄gB +

ūB
t1

)
A

)
,

vf1 =
1

B −A

(
v̄gB +

ūB
t1
− v̄gA −

ūA
t1

)
.

(31)
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Now, integrating the frame velocity in (30) with respect to time yields an expression for

the motion of the frame as

x̃f = Xf + (vf0 + vf1Xf ) t . (32)

A solution of the governing equations of motion is obtained using a semi-inverse ap-

proach. To this end, assume that the material motion in the time interval (0, t1] is of the

form

x̃ = X + (v0 + v1X) t , (33)

where v0, v1 are constants to be determined. Therefore, (referential) balance of mass

implies that

ρ = ρ0 (1 + v1t)
−1 . (34)

Proceeding with enforcement of linear momentum balance, note that, in the absence of

body force and with a constitutive law that depends only on the (assumed) homogeneous

strain, (20) reduces to
dfvd
dt

=
∂vd
∂x̃

(vf − vd) . (35)

Using (33), the preceding equation can be rewritten as

dfvd
dt

=
v1

1 + v1t
(vf − vd) . (36)

The frame-time derivative of the velocity on the left-hand side of equation (36) is deter-

mined to be

dfvd
dt

=
∂

∂t

(
v0 + v1

(
x̃f − v0t

1 + v1t

))∣∣∣∣
Xf

,

=
∂

∂t

(
v0 + v1(Xf + (vf0 + vf1Xf )t)(1 + v1t)−1 − v1v0t(1 + v1t)−1

)∣∣∣∣
Xf

,

=
v1

1 + v1t

(
vf −

v1

1 + v1t
x̃f − v0 +

v1

1 + v1t
v0t

)
,

=
v1

1 + v1t
(vf − (v0 + v1X)) ,

=
v1

1 + v1t
(vf − vd) ,

(37)

where use is made of (32) and (33). Also, in (37) the notation (·)|Xf signifies that a partial

time derivative is taken keeping the frame coordinates fixed.
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In summary, a comparison of the results in (36) and (37) shows that the assumed

motion (33) satisfies linear momentum balance. Lastly, note that the constants v0 and v1

can be determined in terms of the Dirichlet boundary conditions (27) and the end time t1

as

v0 =
1

(B −A)t1
(BūA −AūB) ,

v1 =
1

(B −A)t1
(ūB − ūA) .

(38)

The final configuration Rt1 is now readily determined to occupy the region (a, b), where

a = ã+ v̄gAt1 ,

b = b̃+ v̄gBt1 ,
(39)

with boundary ∂Rt1 = {a, b}.
A sketch of this motion is shown in Figure 2 for the special case v̄A = 0, v̄B > 0,

v̄gA > 0 and v̄gB > 0. In this case, the left boundary undergoes ablation, while the right

boundary experiences surface growth. Note that the ablation of material alters the value

of the displacement at the boundary, since the boundary point upon which the Dirichlet

condition is originally applied is ablated by the end of the time interval. Also, note that

the displacement field exhibits a jump induced by its extension into the growth region.

Next, it is instructive to consider the deformation incurred during an additional finite

time interval (τ2, τ2 + t2], where τ2 = t1 and the reference configuration is updated such

that Rτ2 = Rt1 (therefore, Aτ2 = a and Bτ2 = b). Again, for this time interval, Dirichlet

boundary conditions are specified for each end of the body in the form

u(Aτ2 , t) = ¯̄vA(t− τ2) , u(Bτ2 , t) = ¯̄vB(t− τ2) . (40)

Also, no growth is assumed to take place during this time interval, hence the frame velocity

coincides with the material velocity.

Adopting, again, a semi-inverse approach, assume that the displacement u(X, t; τ2) =

xτ2+t −X is linear in X for each region Mt1 and Gt1 separately, namely

u (X, t; τ2) =


(
v−2 + v−3 X

)
(t− τ2) , Aτ2 ≤ X < Cτ2 , τ2 ≤ t ≤ τ2 + t2(

v+
2 + v+

3 X
)

(t− τ2) , Cτ2 < X ≤ Bτ2 , τ2 ≤ t ≤ τ2 + t2
, (41)

where Cτ2 = c ∈ Rt1 is the growth surface for the first time interval. The four constants

v−2 , v−3 , v+
2 and v+

3 in (41) need to be determined from the two boundary conditions in (40)

and two additional conditions emanating from geometric compatibility and the balance
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laws. The first of the latter two conditions is due to the fact that for all times t ≥ τ2 for

which the region Gt1 exists, it is considered to be a material region. In particular, this

implies that the displacement is continuous at point Cτ2 , hence

(
v−2 + v−3 C

τ2
)

(t− τ2) =
(
v+

2 + v+
3 C

τ2
)

(t− τ2) . (42)

Linear momentum balance holds true at each interior point of the regions Rτ2− =

{X : Aτ2 ≤ X < Cτ2} and Rτ2+
= {X : Cτ2 < X ≤ Bτ2}. Indeed, in each of these regions,

given that the displacements are linear in the reference coordinates, the deformation gradi-

ent is necessarily constant, hence the divergence of the stress vanishes identically. Further-

more, the system experiences no accelerations, as dictated by the assumed displacement

in (41). Therefore, linear momentum balance is satisfied in the absence of body forces.

To enforce linear momentum balance on the interfacial point Cτ2 , it is sufficient (albeit

not necessary) for the deformation gradient to be continuous at that point1. Taking into

account (33) and (41), the deformation gradients F t− and F t+ of the two regions relative

to their respective reference configurations are easily found to be

F t− = F t−τ2 F
t1−
0 =

(
1 + v−3 (t− τ2)

)
(1 + v1t1) , (43)

and

F t+ = F t+
τ2 = 1 + v+

3 (t− τ2) . (44)

Equating the two deformation gradients in (43) and (44) leads to

(
1 + v−3 (t− τ2)

)
(1 + v1t1) = 1 + v+

3 (t− τ2) . (45)

It is important to note that, while the preceding equation imposes continuity (and, more

specifically, constancy) of the total deformation gradient in the regions Rτ2− and Rτ2+
, the

deformation gradient relative to the configuration at time τ2 remains piecewise constant,

as implied by (41).

It is now possible to determine the constants v−2 , v−3 , v+
2 and v+

3 from (42), (45) and

the boundary conditions at time t = τ2 + t2. The latter can be expressed as

¯̄uA = ¯̄vAt2 , ¯̄uB = ¯̄vBt2 , (46)

1It is entirely conceivable that, depending on the particular nature of the constitutive equation for the

stress, other solutions of the balance of linear momentum that effect a discontinuity in the deformation

gradient exist.
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which, with the aid of (41), become(
v−2 + v−3 A

τ2
)
t2 = ¯̄uA ,

(
v+

2 + v+
3 B

τ2
)
t2 = ¯̄uB . (47)

The resulting system yields a solution


v−2

v−3

v+
2

v+
3

 =



−B
τ2 ¯̄uA +Bτ2v1t1 ¯̄uA +Bτ2v1t1A

τ2 − ¯̄uBAτ2 − Cτ2v1t1 ¯̄uA − Cτ2v1t1A
τ2

(Aτ2 + Cτ2v1t1 −Bτ2 −Bτ2v1t1) t2
−Cτ2v1t1 + ¯̄uA − ¯̄uB +Bτ2v1t1

(Aτ2 + Cτ2v1t1 −Bτ2 −Bτ2v1t1) t2

−−B
τ2Cτ2v1t1 +Bτ2 ¯̄uA +Bτ2v1t1 ¯̄uA +Bτ2v1t1A

τ2 − ¯̄uBAτ2 − ¯̄uBCτ2v1t1
(Aτ2 + Cτ2v1t1 −Bτ2 −Bτ2v1t1) t2

−Cτ2v1t1 + ¯̄uA − ¯̄uB + v1t1 ¯̄uA − v1t1 ¯̄uB + v1t1A
τ2

(Aτ2 + Cτ2v1t1 −Bτ2 −Bτ2v1t1) t2


.

(48)

A plot of the displacement is displayed in Figure 3 for the special case ¯̄uA = ¯̄uB = 0. As

argued, the total displacement is discontinuous.

It is important to examine whether the discontinuities in the displacement are a salient

feature of the formulation or the result of the incremental application of surface growth. To

this end, consider the limit of the solution at some fixed time tf (taken here to be tf = 1.0)

as the number of growth time intervals n = tf
∆τ tends to infinity, where ∆τ denotes the

(constant) time between distinct growth events. A series of such solutions is depicted in

Figures 4–6. The case n = 1 in Figure 4 shows the extension of the displacement field into

the growth region after a single time interval, as described earlier. Increasing values of n

show a regular change in the displacements over the growth region. Figure 5 shows a detail

of the displacement for the case n = 100, clearly illustrating the discontinuities. It is clear

from Figure 4 that the jumps in the displacement between neighboring growth regions are

reduced as n is increasing, while at the same time the total number of discontinuity points

is increasing. The limiting case of the displacement for n→∞ can be approximately con-

structed by taking a piecewise linear curve that connects the centers of each discontinuous

segment in the case n = 100. This limiting case is plotted versus the case n = 1 in Figure

6 and shows a trend of softening in the displacement with increasing n.

As expected, the displacement across the whole growth region exhibits a negative gra-

dient, reflecting the incremental addition of material particles on the evolving surface of

the body. At the same time, balance of linear momentum clearly dictates that the stresses

remain non-negative at every point in the growth region. In this manner, the displacement

in the growth region is required to possess a negative gradient (at least in a global sense),

while locally maintaining a positive gradient over most of the same region. These two
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seemingly contradictory requirements are satisfied by the discontinuous displacement field

depicted in Figures 3 through 5.

4 Conclusions

A theory of surface growth in continua is proposed that generalizes the notion of a reference

configuration, since the body includes material particles that come to existence at different

times, due to the process of surface growth. This results in a reference configuration that

is (implicitly) a function of time through the time-dependent addition/removal of material

particles. One important implication of this generalization is that the displacement (and

its gradient) needs to be calculated relative to placements corresponding to different times

for different parts of the body.

In this work, an incremental formulation is adopted, whereby a reference configuration

is chosen to be sufficiently close in time to the current configuration. Also, a decomposition

of the deformation and growth behaviors is effected to enable the analysis of both processes.

The balance laws are formulated with respect to a non-inertial frame of reference, which

is used to track the apparent motion of the body. A simple one-dimensional problem

provides initial evidence of the applicability of the theory. The example illustrates that,

for certain sets of boundary conditions, one solution involves a displacement field with

layers of discontinuities along surfaces which, at earlier times, were exterior boundaries

experiencing surface growth. It is hoped that this theory will contribute to the systematic

analysis of two- and three-dimensional models of crawling motile cells and other classes of

bodies experiencing surface growth.
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Rτ+t

G
χd

χd χg

χg

R̃τ+t
Rτ

M

A

Figure 1: A schematic depiction of typical configurations Rτ (reference), R̃τ+t (intermedi-

ate) and Rτ+t (current) in the theory of surface growth.
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x
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xt1 = a

Mt1
0

bc

b̃x̃t1 = ã

X = A B

Gt10

u = 0

R0

R̃t1

Rt1

Figure 2: Configurations R0, R̃t1 and Rt1 of the growing body for v̄A = 0, v̄B > 0, v̄gA > 0

and v̄gB > 0. Corresponding displacement fields are depicted above each configuration.
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u

u

x

x

Bτ2Cτ2

x̃τ2+t2 = c

R̃τ2+t2

Rτ2

X = Aτ2

Figure 3: Configurations Rτ2 and R̃τ2+t2 = Rτ2+t2 of the growing body for ¯̄uA = ¯̄uB = 0,

¯̄vgA = ¯̄vgB = 0. Corresponding displacement fields are depicted above each configuration.
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Figure 4: Displacement at time t = 1.0 for different values of n. The circle in the lower

right sub-plot defines the region shown in detail in Figure 5.
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Figure 5: Detail of displacement at time t = 1.0 for n = 100.
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Figure 6: Displacement at time t = 1.0 for n = 1 and for n = 100.
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