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Abstract. The estimation of stress at a continuum point from the atomistic scale

requires volume averaging over a region that contains this point. A hypothesis is put

forth to obtain a lower bound for the size of this region based on an analogy to the Ising

model. This hypothesis is tested on copper using two classical elasticity problems.

Submitted to: Modelling Simulation Mater. Sci. Eng.

1. Introduction

In continuum mechanics, stress is a local quantity defined using a limiting process

known as Cauchy’s tetrahedron argument [1]. To reconcile the local stress of continuum

mechanics with the interaction forces of atomistic mechanics, one typically resorts to

volume averaging at the atomistic scale. In this case, the length scale involved in

the averaging process becomes crucial. Therefore, it is desirable to develop rational

guidelines for the estimation of such a length scale.

Atomistic definitions of stress date back to Cauchy, who considered a plane through

a point and investigated the forces of interacting particles crossing the plane inside a

certain radius from this point, see [2, Note B]. Another milestone is the pioneering

work by Irving and Kirkwood [3], who derived pointwise definitions of stress and heat

flux based on phase space averaging of extensive quantities, namely mass, momentum

and energy. Irving and Kirkwood’s procedure was subsequently modified in [4, 5] by

introducing spatial localization functions that effect weighted volumetric averaging.

When the interaction forces are averaged over an extremely small volume, the

resulting atomistic stress exhibits wide spatial variations which are inconsistent with
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the smooth continuum stress. On the other hand, when the averaging volume is too

large, the resulting atomistic stress is excessively smeared and fails to capture potential

inhomogeneities in the continuum stress. Between the preceding two extremes, one may

conjecture that there exists a range of averaging volumes to which the atomistic stress is

essentially insensitive. The existence of such an intermediate asymptotic range is argued

by Barenblatt in a more general context in [6, Chapter 2].

In current practice, the averaging volume is generally chosen by calibrating it

against existing analytical solutions for stress. The aim of this paper is to propose

a lower bound for the characteristic length of the spatial averaging volume used in the

calculation of atomistic stress. For any such bound to be rationally defined, it must be

expressed as a function of some inherent length scale of the problem. Here, the proposed

hypothesis is motivated by the Ising model of statistical mechanics and states that the

lower bound of the characteristic length is a multiple of the correlation length of the

potential energy in the atomistic system.

The organization of the paper is as follows: Section 2 includes a brief review of the

Irving-Kirkwood and Hardy definitions of stress. This is followed in Section 3 by the

statement of the proposed hypothesis for the lower bound of the averaging volume. This

hypothesis is next applied to copper in Section 4, and its validity is tested in Section 5

by way of two elasticity problems.

2. Atomistic stress

In their seminal paper [3], Irving and Kirkwood laid the foundation for the definition of

continuum stress and heat flux fields in terms of microscopic kinematics and kinetics.

Many commonly used atomistic definitions of stress may be considered as amendments

or variations of their formula. Although Irving and Kirkwood define stress pointwise

by Dirac delta functions, they state in their paper that macroscopic stress must be

obtained by spatial averaging. In particular, this averaging needs to be performed over

a microscopically large, but macroscopically small, domain determined by the inherent

length scale of the microstructure and the resolution of one’s measuring instruments. In

a subsequent work [7], Noll slightly reformulated Irving and Kirkwood’s stress formula

by replacing an infinite series term with a closed-form integral expression.

The Irving and Kirkwood stress formula gives rise to the virial stress σv at a

continuum point x upon neglecting all higher-order terms in the expansion of Dirac-delta

differences and averaging over a volume Ω(x) centered at point x. This is expressed as

σv(x) = − 1

Ω(x)

( N∑
i=1

miui ⊗ ui +
1

2!

N∑
i,j=1,j 6=i

fij ⊗ xij

+
1

3!

N∑
i,j,k=1,k 6=j 6=i

fijk ⊗ (xij + xik) + . . .

)
. (1)

Here, N is the number of atoms in Ω(x), mi the mass of atom i, ui the velocity of atom

i relative to the mean velocity of the N atoms, and xij = xi − xj with xi being the
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position vector of atom i. Also, fij and fijk denote forces on atom i due to its pair and

three-body interactions with other atoms. The stress in Equation (1) becomes equal

to the one derived from the virial theorem of [8–10] by replacing Ω(x) with the total

volume V of the system.

The Hardy stress [4,5] is derived from [3] by replacing the Dirac delta function for

atom i in the stress definition with a localization function ψ(x− xi) which leads to

σh(x) = −
( N∑

i=1

miui ⊗ uiψ(x− xi) +
1

2!

N∑
i,j=1,j 6=i

fij ⊗ xijBij(x)

+
1

3!

N∑
i,j,k=1,k 6=j 6=i

fijk ⊗
(
xijBij(x) + xikBik(x)

)
+ . . .

)
. (2)

The function ψ(x − xi) is non-negative, reaches a maximum at x = xi, and tends to

zero as the distance |x− xi| becomes large. Furthermore, it has to be normalized such

that
∫
R ψ(x− xi) dΩ = 1, where R is the region occupied by the system. This function

smears out the discrete nature of matter and also defines the region around a continuum

point x over which space averaging is performed. The bond function Bij(x) between

atoms i and j is defined in Equation (2) as Bij(x) =
∫ 1

0
ψ(x−xi+λxij) dλ. This function

defines the contribution to stress due to the interaction of atoms i and j according to the

portion (and corresponding weight) of the line segment (defined by i and j) that crosses

the space-averaging volume. A comprehensive overview of atomistic stress measures is

given in [11,12].

3. A hypothesis for the spatial averaging volume

Equations (1) and (2) show that the continuum stress at a point x is calculated either

by averaging over a volume around x or by integrating over the support of a localization

function centered at x. As noted in the Introduction, the averaging volume (likewise, the

support of the localization function) should be sufficiently large to eliminate the noise

in stress due to the individual atomistic interactions and sufficiently small to preserve

the physically relevant spatial variations in stress. Therefore, it is essential to define

a suitable volume or localization function for such a calculation. In this section, a

hypothesis is proposed that informs the choice of these two entities. This hypothesis is

based on the spatial correlations of the potential energy and is inspired by the classical

Ising model of statistical mechanics [13, Chapter 3].

By way of background, recall that the Ising model is defined on a set of N variables

si, called the spins, each of which has value +1 or −1. The Hamiltonian for this system

may be written as

H̃ = −
N∑
i=1

Hisi −
1

2!

N∑
i,j=1,j 6=i

Jijsisj −
1

3!

N∑
i,j,k=1,k 6=j 6=i

Kijksisjsk − . . . .(3)

Here, the magnetic field Hi, the pair coupling Jij and the three-spin coupling Kijk

describe the interactions of spin i with the external field, with spin j and with the spins
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(j, k), respectively. When the Hamiltonian is restricted to nearest-neighbor interactions,

the two-point correlation
〈

(si − 〈si〉)(sj − 〈sj〉)
〉

, which defines the correlation in the

fluctuation of the spins si and sj, may be computed analytically and is shown to decay

exponentially to zero as a function of the “distance” | i − j | [13, Section 3.5]. This

means that fluctuations in si affect the values of sj only inside a small neighborhood of i.

Note that the angled brackets in the preceding definition of the two-point correlation

denote phase-space averaging.

Next, turning to an atomistic N -particle system, a Hamiltonian may be written as

H =
1

2

N∑
i=1

1

mi

pi ·pi+
N∑
i=1

Ui+
1

2!

N∑
i,j=1,j 6=i

Uij +
1

3!

N∑
i,j,k=1,k 6=j 6=i

Uijk + . . . , (4)

as, e.g., in [14]. Here, mi and pi are the mass and momentum of atom i, respectively.

Also, Ui denotes the potential due to an external field acting on atom i, while Uij and

Uijk denote the pair and cluster potentials due to the interaction of atom i with j and

with the pair (j, k), respectively. The preceding Hamiltonian may be also written as

H =
∑N

i=1Ei, where Ei is the total energy of particle i. This, in turn, may be expressed

as Ei = Ti + Vi, where Ti and Vi are the kinetic and potential energies of particle i,

defined respectively as

Ti =
1

2mi

pi · pi (5)

and

Vi = Ui +
1

2!

N∑
j 6=i

Uij +
1

3!

N∑
j,k 6=i

Uijk + . . . . (6)

It is clear that Equations (3) and (4) share the same general additive structure for the

interaction terms. Furthermore, it is assumed here that fluctuations in the total energy

of a particle satisfy the same correlation property as the spins in the Ising model. This

may be viewed as a statement of locality, as remarked in [15, Section III]. Drawing

from the analogy between the Ising and the N -particle Hamiltonians, a hypothesis is

put forth according to which a lower bound for the length (hence, also for the volume)

used in spatial averaging at a point xi occupied by atom i is determined by the decay

of the two-point correlation of the energy
〈

(Ei − 〈Ei〉)(Ej − 〈Ej〉)
〉

, for atoms j 6= i.

This will be referred to as the correlation length at atom i. For the more general case

of a point x not occupied by an atom, the correlation length is equal to that obtained

for the nearest atom i.

The preceding hypothesis may be further refined upon noting that for a system

in thermodynamic equilibrium at a fixed temperature, the particle velocities follow the

canonical distribution [16]. This readily implies that the two-point correlation of the

kinetic energy vanishes. Therefore, only the two-point correlation
〈

(Vi−〈Vi〉)(Vj−〈Vj〉)
〉

of the potential energy is of relevance in the determination of the averaging volume.

The proposed hypothesis enables the estimation of the spatial averaging volume

at each continuum point of interest according to the local microstructure. However,
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this estimation demands a considerable amount of computation time. Therefore, it is

advisable to determine a correlation length of the material under idealized conditions,

which can be subsequently used to define the spatial averaging volume.

4. Correlation length in copper under idealized conditions

This section describes the procedure by which the spatial correlation of potential energy

is used to determine a correlation length for copper.

A face-centered cubic lattice with periodic boundary conditions and 8× 8× 8 unit

cells is modeled using LAMMPS [17]. The unit cell length is taken to be a = 3.615 Å

and an EAM potential, given by

H =
1

2

N∑
i=1

1

mi

pi · pi +
N∑
i=1

F

( N∑
j=1,j 6=i

ρ(xij)

)
+

1

2!

N∑
i,j=1,j 6=i

Uij , (7)

is used to determine the atomic interactions with cut-off radius of 2.5a [18, 19]. Here,

ρ(xij) is the contribution to the electron density from atom j at atom i with xij being

the distance between the two atoms, and F (·) is an embedding function that denotes

the energy required to place atom i into the existing electron cloud. Standard forms of

these functions may be found in [19, Appendix A]. It follows that the energy of atom i

is given by

Ei =
1

2mi

pi · pi + F

( N∑
j=1,j 6=i

ρ(xij)

)
+

1

2!

N∑
j=1,j 6=i

Uij (8)

while the Hardy stress is derived using the Irving-Kirkwood procedure [3–5] to be

σh(x) = −
N∑
i=1

miui ⊗ uiψ(x− xi) +

N∑
i,j=1,j 6=i

[
F ′
( N∑

l=1,l 6=i

ρ(xil)

)
ρ′(xij)

xij
xij − fij

]
⊗ xijBij(x) , (9)

where the superscript ′ denotes the derivative of a function with respect to its argument.

The corresponding virial stress is obtained from (9) by replacing the localization function

ψ and the bond function Bij by Ω, as in Equation (1).

The calculation of correlation length consists of three steps: First, the system is

equilibrated at a temperature of 300 K using the Nosé-Hoover algorithm [20] for 400,000

time steps with step-size of 1 fs. Next, the atoms are tracked for 48 million additional

time steps with the same step-size, where the state at every third time step is used for

the calculation of correlation functions. Finally, an arbitrary atom i in the bulk system

is chosen to compute the spatial correlation function Cij as

Cij(s) = 〈δEi(0)δEj(s)〉 =
1

M

M−1∑
m=0

δEi(m∆t)δEj(m∆t+ s) , (10)
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where δEi(s) is the fluctuation in the atom’s energy from its average at time t = s [21,

Chapters 11 and 35]. Here, this atom is chosen to be at the center of the system

and spatial correlations of potential energy are computed with its neighbors. Also,

the variable s in Equation (10) is set to zero since attention is focused on steady-state

problems.

The correlation of the potential energy between the atom at the center of the system

and its neighbors is shown in Figure 1. The plot reveals non-zero correlation up to a

distance of approximately 2.00a. Therefore, the hypothesis in Section 3 implies that the

length scale of the averaging volume (which is taken here to be twice the correlation

length) is of the order of 4a
.
= 14.5 Å, a remarkably small size. Note that the observed

correlation length is smaller than the cut-off radius employed in the empirical potential.

In fact, it is found by numerical experimentation that the correlation length remains

unchanged even when the cut-off radius is increased to 3a or 4a. Also, Figure 1 confirms

that the kinetic energy of any two distinct atoms is uncorrelated.

The magnitude of the potential energy correlation function depends on temperature,

as seen in Figure 2. Specifically, with the exception of the closest neighbors, the

correlation decreases with increasing temperature. However, the correlation length

remains the same over a range of temperatures.

There is a small influence on the correlation by the type and magnitude of loading

within the realm of small deformations. This influence is observed by estimating the

correlations in a deformed lattice at 300 K. First, the system is compressed without

lateral expansion by reducing the unit cell length to simulate axial strains of 1% and 5%.

Next, the influence of simple shear is investigated by deforming the unit cell accordingly

to generate shears of 1% and 5%. The results for both loading cases are given in

Figure 3. The dependence of the correlations on deformation may be explained by the

changes in the lattice topology. Again, the correlation length itself does not appear to

be significantly affected by the deformation.

The correlation results do not appear to be affected by the size of the system.

Indeed, it can be seen from Figure 4 that the results of the base calculation on 48×48×48

unit cells do not differ in any substantial way from those of the original 8× 8× 8 case

at the end of 6 million time steps. This is expected, to some extent, due to the use of

periodic boundary conditions to simulate the bulk system.

Surface effects on the correlations are investigated by considering an fcc lattice of

copper with size of 8× 8× n unit cells, where n = 24, 48. Traction-free (non-periodic)

boundary conditions are applied on the surface with 8 × 8 unit cells, while periodic

boundary conditions are imposed on the other surfaces. Correlations are computed for

the center atom on the free-boundary face and are compared to the base periodic case.

The results at the end of 6 million time steps show an influence of surface effects on

correlations, as seen in Figure 4. This can be explained by observing that the atoms

close to the surface are subject to end-effects, which generate stresses in a small region

around the surface. However, the correlation lengths remain essentially the same even

in the presence of free surfaces. This is because the strains in the vicinity of the surface
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are relatively small, and, as already seen in Figure 3, the correlation lengths for small

strains remain practically unchanged.

Similar results are found for the case of aluminum modeled again using the EAM

potential. However, these are not included here due to space limitations.

5. Examples

This section includes numerical simulations that test the validity of the proposed

averaging hypothesis. The simulations focus on the virial and Hardy stress obtained

from atomistic data using different sizes of the spatial averaging volume. The two

representative problems analyzed here are a crystal with an edge dislocation and an

infinite plate with a circular notch under uniaxial load (Kirsch problem). Both problems

possess analytical solutions in elasticity theory. As stress is a continuum concept, the

atomistic definitions should reproduce those solutions satisfactorily, albeit not exactly

due to the use of finitely sized atomistic domain.

All simulations are performed at zero temperature, which cancels the influence of

the kinetic part of the stress. The conjugate gradient method is used to minimize the

total potential energy of the system.

5.1. Edge dislocation

The distribution of residual stress about the core of an edge dislocation in an elastic

solid is considered here as an introductory example. The stress is exclusively due to

the defect in the absence of external loading or inhomogeneities. The material is taken

to be a single crystal of copper in an fcc lattice. The arrangement of atoms in the

vicinity of the dislocation relative to the coordinate system is illustrated in Figure 5.

An analytical solution of this problem within the theory of anisotropic linear elasticity is

included in [22]. Here, the elastic constants are taken from experimental measurements

at room temperature [23], and are c11 = 171.00 GPa, c12 = 123.90 GPa and c44 = 75.60

GPa following the convention in [24]. A molecular dynamics simulation of this problem

is found in [25].

In this example, the atomistic model of the solid consists of 1000 × 1000 × 3 unit

cells with periodic boundaries on the two square surfaces and free boundaries on the

remaining four surfaces. The edges of the solid are aligned to the crystallographic

axes (with the x1-axis coinciding with [100]) and a 〈100〉 edge dislocation is created

at the center of the simulation box by removing one column of corner atoms and an

adjacent column of face atoms, and subsequently closing the gap by relocating atoms

near the dislocation in order to bring the system closer to the ultimate equilibrium

state. This produces a Burgers vector oriented along the x1-direction. Subsequently,

energy minimization at zero temperature with relative tolerance 10−15 leads the system

to equilibrium.

The distribution of virial normal stresses σ11 and σ22 along the x2-axis, as well as
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the virial shear stress σ12 along the x1-axis starting from the dislocation core are shown

in Figure 6. Corresponding results for the Hardy stress are shown in Figure 7. The

analytical solution is also plotted for reference purposes. Both the virial and Hardy

stresses are evaluated at points with coordinates 0, 3/5a, 6/5a, etc. on either the x1-

or x2-axis. Owing to the periodic boundary conditions, the averaging volume Ω at each

such point is an infinite cylinder whose major axis is perpendicular to the (x1, x2)-plane.

Here, cylinders of radii 0.75a, 1.25a, 1.75a, 2.00a, 2.25a, 2.75a and 5.00a are considered

for the evaluation of stresses. A constant localization function is chosen for the Hardy

stress to be as close as possible to the virial stress. Additional calculations, which are not

reported here due to space limitations, confirm that the chosen system is large enough

for changes to the stresses in the vicinity of the defect with further increases in system

size to be practically insignificant.

The virial stress distributions are smooth for all averaging lengths greater than

0.75a and exhibit relatively small scattering away from the singularity. However,

convergence to the analytical solution is not monotonic with the averaging length. For

instance, smaller averaging lengths yield more accurate σ11 stress, but less accurate

σ22 stress relative to the analytical solution. However, the stress distributions for the

proposed lower bound averaging length of 2.00a derived in Section 4 are reliably accurate

for all stress components. The Hardy stress distributions are highly oscillatory for

small averaging lengths with large deviations from the analytical solution even further

away from the dislocation. However, the magnitude of these oscillations substantially

diminishes starting near the averaging length of 2.00a. As expected, for even larger

averaging lengths, the stresses become smoother but deviate significantly from the

analytical solution near the singularity.

The comparison of the virial and Hardy stresses to a local analytical solution that

involves singularities at the dislocation core is bound to be relevant only starting at

some distance away from such singularities. An alternative option of comparing the

atomistic stresses to the non-local solution in [26] is not explored here, because the

latter incorporates the non-local effect by way of a Gaussian localization function that

depends on ad-hoc user-defined parameters.

5.2. Infinite plate with circular notch

In this section, the stress distribution is determined for a plate with a circular notch

subject to uniaxial loading. An analytical solution to this problem for the case of plane

strain is given in [27] assuming that the plate is infinite and the material is linearly

elastic and orthotropic. As in the previous example, this problem is solved for copper,

whose elastic parameters are taken again from [23]. An earlier atomistic solution has

been given in [11].

A finite section of the plate is modeled by 1000 × 1000 × 3 unit cells with a hole

of radius 60a placed at the center (x1, x2) = (0, 0) of the simulation block. Periodic

boundary conditions are imposed on the surfaces normal to the plate. The system is
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loaded by applying a uniform tensile traction of p = 1000 MPa on the edges normal

to the x2-direction. Homogeneous traction boundary conditions are assumed for the

remaining two edges of the plate. Furthermore, the simulation box is oriented along the

crystallographic axes with the x1-axis coinciding with [100]. The equilibrium state is

determined at zero temperature by energy minimization with relative tolerance 10−15.

The distribution of axial stresses along the x1- and x2-axis is plotted in Figure 8 and

Figure 9, respectively, for the virial case and in Figure 10 and Figure 11, respectively, for

the Hardy case. All stresses are shown for different cylindrical averaging volumes with

constant localization functions (for the Hardy case), and are compared to the analytical

solution. Both the virial and Hardy stresses are evaluated at points with coordinates 0,

3/5a, 6/5a, etc. on either the x1- or x2-axis.

As is evident from the results, this problem entails significant challenges in

converging to the analytical stress response. Notwithstanding the obvious difficulty

in obtaining smooth stresses close to the notch boundary, significant oscillations are

present, especially for the Hardy case, even at considerable distances (of the order

of the notch radius itself) from the boundary. As expected, the amplitude of these

oscillations is larger for smaller averaging volumes. However, the proposed lower bound

averaging length of 2.00a already yields reasonable solutions for all reported stresses

with a consistent trend of improvement as the averaging length increases. For averaging

lengths below this lower bound, the large amplitude of the oscillations prevents the

reliable estimation of stress. These observations hold true for both virial and Hardy

stresses, although the latter exhibit overall larger amplitudes of oscillation.

It is noted that the small persistent deviation of the numerical results from the

analytical solution may be due to the representation of an infinite plate by a relatively

small finite system. Still, the size of the system in comparison to the hole radius is

chosen to render this deviation practically insignificant.

6. Conclusion

This paper investigates the spatial averaging necessary to deduce continuum stresses

from atomistic simulations. In particular, a lower bound for the size of the spatial

averaging volume is proposed based on an analogy to the Ising model. This is

determined from the decay of the two-point correlation of the potential energy of the

atoms. Therefore, the spatial averaging volume surrounding an atom contains all the

neighboring atoms that have a non-trivial energetic interaction with it. Numerical

experiments in copper indicate that a lower bound to spatial averaging size is at

approximately two times the unit cell length, which is a surprisingly small number. Yet,

numerical tests on an edge dislocation and a circular notch in an infinite plate support

the preceding hypothesis, as they produce virial and Hardy stresses that compare well

to the corresponding analytical solutions of elasticity theory.

As a side note, it is observed that the virial and Hardy stress formulations give

comparable solutions when space-averaged with length equal or modestly larger than the
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proposed lower bound. Although Hardy stress is commonly preferred in the literature

and considered to be superior to virial stress, such a conclusion cannot be drawn here

on the basis of the findings from the numerical experiments.

Future work needs to focus on simulations at finite temperature and on the effect

of the shape of the localization function (especially for space averaging volumes which

are close to the proposed lower bound). Finally, it is important to further test the

proposed hypothesis on increasingly complex problems, such as those encountered in

fracture mechanics.
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Figure 1. Normalized correlation function of the potential energy (left) and kinetic

energy (right) relative to the center atom. The vertical dashed line is at distance 2.00a

from the center atom.
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Figure 2. Normalized correlation function of the potential energy at different

temperatures relative to the center atom (left) and a magnified plot around the zero-

correlation region (right). The vertical dashed line is at distance 2.00a from the center

atom.
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Figure 3. Normalized correlation function of potential energy under compression

(left) and shear (right) relative to the center atom. The vertical dashed line is at

distance 2.00a from the center atom.
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Figure 4. Normalized correlation function of potential energy at no strain. The

system size influence on the correlation for the center atom with its neighbors is shown

in the left figure, while the surface influence on the correlation for an atom lying on the

free surface is shown in the right figure. For the latter, the correlation is considered

with the neighbors lying both on the free surface and in the bulk. The vertical dashed

line is at distance 2.00a from the center atom.
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Figure 5. Arrangement of atoms about core of edge dislocation and embedded

coordinate system.
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Figure 6. Virial stress distribution about core of edge dislocation. Top: Normal stress

σ11 in positive x2-direction at x1=0; Middle: Normal stress σ22 in positive x2-direction

at x1=0; Bottom: Shear stress σ12 in positive x1-direction at x2=0. The legends denote

radii of cylinders of spatial averaging volume in terms of lattice lengths.
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Figure 7. Hardy stress distribution about core of edge dislocation. Top: Normal stress

σ11 in positive x2-direction at x1=0; Middle: normal stress σ22 in positive x2-direction

at x1=0; Bottom: Shear stress σ12 in positive x1-direction at x2=0. The legends

denote radii of cylinders of spatial averaging volume in terms of lattice lengths.
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Figure 8. Virial stress distribution for Kirsch problem. Top: Normal stress σ11 in

positive x1-direction starting at radius of notch and at x2=0; Bottom: Normal stress

σ22 in positive x1-direction starting at radius of notch and at x2=0. The legends denote

radii of cylinders of spatial averaging volume in terms of lattice lengths.
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Figure 9. Virial stress distribution for Kirsch problem. Top: Normal stress σ11 in

positive x2-direction starting at radius of notch and at x1=0; Bottom: Normal stress

σ22 in positive x2-direction starting at radius of notch and at x1=0. The legends denote

radii of cylinders of spatial averaging volume in terms of lattice lengths.
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Figure 10. Hardy stress distribution for Kirsch problem. Top: Normal stress σ11 in

positive x1-direction starting at radius of notch and at x2=0; Bottom: Normal stress

σ22 in positive x1-direction starting at radius of notch and at x2=0. The legends denote

radii of cylinders of spatial averaging volume in terms of lattice lengths.
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Figure 11. Hardy stress distribution for Kirsch problem. Top: Normal stress σ11
in positive x2-direction starting at radius of notch and at x1=0. Bottom: Normal

stress σ22 in positive x2-direction starting at radius of notch and at x1=0. The legends

denote radii of cylinders of spatial averaging volume in terms of lattice lengths.
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