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Abstract

A new theory is proposed for the continuum modeling of liquid flow through a
porous elastic solid. The solid and the voids are assumed to jointly constitute the
macroscopic solid phase, while the liquid volume fraction is included as a separate
state variable. A finite element implementation is employed to assess the predictive
capacity of the proposed theory, with particular emphasis on the mechanical response
of Nafion R© membranes to the flow of water.
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1 Introduction

Liquid flow through porous solids occurs in both natural materials, such as rocks and soil,

and traditional industrial processes involving water filtration, drainage and petroleum ex-

traction. Man-made solid materials that modulate liquid flow include organic membranes

used in phase separation processes and find a wide array of applications. One such appli-

cation of continuously increasing interest involves the use of Nafion R© membranes in PEM

fuel cells. During normal fuel cell operation, water enters the membrane through sorption

and/or diffusion. Variations of water concentration in the membrane result from changes

in operating conditions, (e.g., temperature, start-up or shut-down events, circuit load fluc-

tuations). These, in turn, may greatly affect the efficiency of the fuel cell. Indeed, when

the water concentration is too high, the two electrodes are flooded and the catalysts are

incapacitated, hence retarding (or even completely arresting) the chemical reactions. On

the other hand, when the water concentration is too low, the membrane dries up and this

limits the conductivity of protons. A parallel issue, on the purely mechanical side, is that

Nafion R© membranes have been experimentally shown to undergo substantial volumetric

deformation (swelling) due to changes in water concentration [1, 2].

The transport of the liquid phase and its interaction with the solid phase have been

studied by different mechanical theories. Among them, mixture theory was one of the

earliest to be investigated. This theory was originally proposed by Fick [3], and further

refined in a series of subsequent contributions, see, e.g., [4–7]. Adkins [8] and Bowen [9,10]

studied flow through porous media using mixture theory. Two major drawbacks of mixture

theory are the absence of the liquid volume fraction as a state variable and the need to

formulate separate boundary and initial conditions for each phase. The former inhibits the

modeling of progressive saturation or drying, while the latter renders the formulation of

general initial/boundary-value problems challenging.

An alternative approach involves the use of averaging methods, as advocated, e.g.,

in [11–14]. Unlike mixture theory, here one introduces the notion of the representative

elementary volume (REV), where different parts of the domain are occupied by different

phases. Subsequently, the classical balance laws of continuum mechanics are imposed

on each phase subject to the requisite interface boundary conditions. This is followed

by the derivation of macroscopic balance equations by means of averaging over the REV

domain. This approach, while maximally inclusive of the microstructural aspects of the

flow, requires an inordinate degree of modeling resolution, and is very challenging for
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computational implementation.

A purely continuum approach has been adopted by Coussy [15], who admits porosity

as a state variable and formulates separate balance laws for the pure solid and pure liquid

phases. This, in turn, necessitates the introduction of separate time derivatives for each

phase. The bulk of Coussy’s technical work is predicated on the assumption that the pores

of the material are fully saturated. If this is not the case [15, Chapter 6], Coussy introduces

a balance between multiple fluid phases (include air) which regulates the porosity of the

material. This approach is also explored in [16], where continuum equations of momentum

and energy balance are formulated for the whole “mixture”, and are coupled to Darcy’s

law-based equations for the diffusion of each phase. The crucial assumption posited in

this work is that there is an explicitly known functional dependence of the liquid volume

fraction on the capillary pressure and the temperature. With this assumption in place, the

governing equations become practical and also amenable to finite element modeling.

In this paper, a new continuum-based theory for the modeling of liquid flow through

porous media is proposed and tested by using the finite element method. The proposed

theory draws from earlier work, but includes several novelties that are specifically intended

to broaden its applicability. Specifically, a key assumption here is that the dry solid and

the voids are homogenized into a single macroscopic solid medium. This makes sense for

materials in which, regardless of the overall porosity, the size of the pores is much smaller

that the overall size of the medium. In this case, the liquid phase contributes additively to

macroscopic balance laws without need for separate balances for different phases. Moreover,

since the balance laws are stated relative to the (homogenized) solid phase, the proposed

theory relies on only one set of material time derivatives, namely those relative to the

solid frame. Additionally, the liquid volume fraction is treated as a state variable, thus

permitting the imposition of practical boundary conditions and the precise identification

of dry, partially saturated, and fully saturated conditions of the porous medium, as well as

the transitions from one such condition to another.

The organization of the paper is as follows: Section 2 contains the basic kinematic,

kinetic and constitutive assumptions of the theory. This is followed in Section 3 by the

statement of the balance laws for the porous medium. Weak forms of these balance laws

suitable for finite element implementation are included in Section 4 together with a short

discussion on time discretization. Section 5 documents three representative simulations

that examine the predictive capacity of the theory. Concluding remarks are offered in

Section 6.
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2 Concepts, definitions and constitutive relations

Consider a heterogeneous solid body B consisting of solid matter and voids (pores) of

different sizes and shapes. In this work, it is assumed that the characteristic size of the

voids is much smaller than the overall size of the body. Therefore, the material possesses a

microstructure consisting of solid and void phases, as shown in Figure 1. This microstruc-

ture may be locally homogenized to yield a macroscopic continuous solid medium B̄. This

medium will be endowed with momentum and density fields, as described below.

2.1 Motion and deformation

Let the continuous solid body B̄ occupy regions R0 and R of volume vol(R0) and vol(R)

at times t0 and t, respectively. These regions have oriented boundaries ∂R0 and ∂R, which

are assumed smooth enough to possess at every point unique outward unit normals N

and n, respectively. Also, let X be the position vector of a point in R0 at time t0. The

motion χ of the macroscopic continuum maps X to the vector x = χ(X, t) in R, as in

Figure 2. The motion is assumed to be invertible for any given time t. The velocity of a

material point occupying x at time t is subsequently defined as v(X, t) = ∂χ(X,t)
∂t , where

X is the position of the same material point at t0. Likewise, the deformation gradient at

a point x in R relative to its image X in R0 is defined as F(X, t) = ∂χ(X,t)
∂X . Since the

motion is invertible, J = det(F) 6= 0 for all (X, t), and without loss of generality, it is

further assumed that J > 0.

2.2 Porosity, liquid volume fraction and density

The porosity of a solid is generally defined as the ratio of the volume of voids over the

total volume of the porous solid. A local definition of porosity at the macroscale requires

the introduction of a representative element of volume dv � vol(R) which accurately

resolves the microscopic poral structure of the material. Therefore, the size of dv should

be significantly larger than the average size of the pores. Now, the porosity φ̄ of a solid

at a macroscopic point may be defined as the ratio of the void volume to the volume dv

of the porous solid in the representative element. It follows that, under all circumstances,

0 ≤ φ̄ < 1. It is assumed in this work that changes in the porosity φ̄ due to the deformation

of the solid are negligible.

Some or all of the pores may be filled with a liquid, rendering the body partially or

fully saturated (otherwise, it is referred to as dry). In a partially saturated solid, a fraction
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of the voids is occupied (either partially or fully) by the liquid, as in Figure 3. Specifically,

assume that the volume of the liquid in the representative element is dvl. Now, the liquid

volume fraction φ is defined locally in the macroscale by

dvl = φdv , (1)

where φ ≤ φ̄, with the strict equality holding for the fully saturated case.

Mass conservation in the microscale implies that the macroscopic mass density ρ satisfies

the condition

ρdv = ρldvl + ρsdv , (2)

where ρl and ρs are the densities of the pure liquid and the (dry) porous solid, respectively.

Here, ρs is a homogenized density which accounts for the presence of voids in the solid.

Equations (1) and (2) now imply that

ρ = ρlφ+ ρs . (3)

2.3 Liquid mass flux and linear momentum

Preliminary to the definition of liquid mass flux, let vl be the velocity of the liquid phase,

which, in general, differs from the velocity of the macroscopic solid. Now, the flux of liquid

mass through the solid can be expressed as

q = ρlφvr , (4)

where vr = vl − v is the relative velocity of liquid. Taking into account (3) and (4), the

linear momentum ρsv + ρlφvl of the solid and liquid phases may be written as

ρsv + ρlφvl = ρv + q . (5)

When the material is not fully-saturated, it is assumed that the flux of liquid mass

obeys Fick’s law [3]. Indeed, this stipulates that the flux of the liquid mass is proportional

to the effective liquid density ρlφ and to the gradient of the liquid volume fraction, that is,

q = −Kρlφ gradφ , (6)

where K(> 0) is an isotropic diffusivity parameter.

Equations (4) and (6) permit the representation of the liquid velocity vl as a function of

the velocity v of the macroscopic solid and the spatial gradient gradφ of the liquid volume

fraction according to

vl = v −K gradφ . (7)
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Therefore, if the densities ρs, ρl, the velocity v and the liquid volume fraction φ are adopted

as state variables in this theory, the preceding observation implies that the liquid velocity

vl is not an independent state variable. This is an important point of difference from

classical mixture theory, as the latter requires the use of velocities for both the solid and

the liquid phase.

2.4 Effective stress

The macroscopic solid and the liquid contribute to the stress in the body. Here, the

cumulative Cauchy stress is assumed to take the form

T = Ts − pli , (8)

where Ts is the stress for the macroscopic solid, pl is the excess pressure due to the presence

of the liquid phase, and i is the spatial second-order identity tensor. Similar additivity

assumptions for stress have been previously utilized in [16–18].

In this work, the solid response is assumed hyperelastic. For specificity and given

the moderate magnitude of the deformation, the solid is taken to obey the Kirchhoff-

Saint Venant constitutive law, according to which the second Piola-Kirchhoff stress Ss =

JF−1TsF
−T is given by

Ss = λ tr(E)I + 2µE . (9)

Here, E is the Lagrangian strain, while λ, µ are elastic constants for the macroscopic solid.

The excess pressure due to the liquid phase should clearly depend on the liquid volume

fraction, that is pl = p̂l(φ). For simplicity, a linear relation is assumed here in the form

pl = Cφ , (10)

where C is a material constant (see [16] for a related assumption).

3 Balance laws

Consider a part of the macroscopic solid, which occupies an arbitrary closed and bounded

region P ⊂ R with smooth boundary ∂P at time t.

Balance of mass and linear momentum are formulated below by examining the material

in region P. Here, all material time derivatives of integrals over P are defined by keeping
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material particles of the macroscopic solid fixed. Therefore, the material time derivatives

of arbitrary scalar and vector functions ψ(x, t) and w(x, t) are given by

dψ

dt
=

∂ψ

∂t
+ gradψ · v ,

dw

dt
=

∂w

∂t
+ (grad w)v . (11)

3.1 Balance of mass

The rate of change of total mass for the region P occupied by the macroscopic solid at

time t takes the form

d

dt

∫
P
ρ dv =

d

dt

∫
P
ρs dv +

d

dt

∫
P
ρlφdv , (12)

where use is made of (3). Since the mass of the macroscopic solid material is conserved,

the preceding equation readily reduces to

d

dt

∫
P
ρ dv =

d

dt

∫
P
ρlφdv . (13)

Also, since all changes of the liquid mass in P are due to the flux of the liquid q at the

boundary ∂P, it follows from (13) that the balance of total mass may be expressed simply

as
d

dt

∫
P
ρlφdv = −

∫
∂P

q · n da . (14)

Appealing to the Reynolds’ transport, divergence and localization theorems, the integral

statement (14) gives rise to a corresponding local statement, which is given by

d

dt
(ρlφ) + ρlφ div v = −div q . (15)

Alternatively, combining (13) and (14), mass balance may be expressed in term of the

macroscopic mass density as

dρ

dt
+ ρdiv v = −div q . (16)

In comparing equation (16) to the corresponding mass balance equation in classical mixture

theory, it is noted that the latter is obtained by summing the respective balance equations

for the different phases and defining an equivalent material time derivative as a linear

combination of the density-weighted derivatives of the individual phases. Clearly, no such

summation is needed here, because the mass balance equation is written with respect to

the macroscopic solid and, hence, incorporates changes to the fluid mass through the flux

term q.

The conventional local form of mass balance is recovered from (16) by merely setting

q = 0.
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3.2 Balance of linear momentum

Balance of linear momentum necessitates that the rate of change of total linear momentum

for the region P occupied by the macroscopic solid at time t be equal to the external

forces acting on the material and the flux of linear momentum −(ρlφvl)v
r · n through the

boundary ∂P. This translates to

d

dt

∫
P

(ρsv + ρlφvl) dv =

∫
P
ρb dv +

∫
∂P

t da−
∫
∂P

(ρlφvl)v
r · n da , (17)

where t = Tn is the traction vector on ∂P. Recalling (4) and (5), the preceding equation

may be equivalently rewritten as

d

dt

∫
P

(ρv + q) dv =

∫
P
ρb dv +

∫
∂P

t da−
∫
∂P

(q · n)vl da . (18)

Invoking, again, the Reynolds’ transport theorem and also the mass balance equation

(16) and the divergence theorem, the integral statement of linear momentum (18) may be

recast in the form∫
P

(
ρ
dv

dt
− v div q +

dq

dt
+ q div v

)
dv =

∫
P
ρb dv +

∫
P

div T dv −
∫
P

div (vl ⊗ q) dv .

(19)

The corresponding local form follows readily from (19), and reads

ρ
dv

dt
− v div q +

dq

dt
+ q div v = ρb + div T− div (vl ⊗ q) . (20)

Again, setting q = 0 reduces (20) to the conventional local form of linear momentum

balance.

4 Finite element implementation

4.1 Weak forms

In this section, weak counterparts of the local balance equations (15) and (20) are con-

structed preliminary to finite element discretization.

For mass balance, equation (15) is first weighted by a scalar test function η, then

integrated over P, so that, upon invoking integration by parts and the divergence theorem,

it leads to∫
P
ηρl

dφ

dt
dv +

∫
P
ηρlφ div v dv −

∫
P

grad η · qdv +

∫
∂P
ηq · n da = 0 . (21)
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Likewise, for balance of linear momentum, equation (20) is contracted with an arbitrary

vector test function ξ and integrated over the domain P. This leads to∫
P
ξ · ρdv

dt
dv −

∫
P
ξ · v div q dv +

∫
P
ξ · dq

dt
dv +

∫
P
ξ · q div v dv −

∫
P
ξ · ρb dv

−
∫
P
ξ · div T dv +

∫
P
ξ · vl div q dv +

∫
P
ξ ·
[
(grad vl)q

]
dv = 0 . (22)

Applying integration by parts and the divergence theorem to the second and sixth terms

on the left-hand side of (22), one may recast the preceding weak form as∫
P
ξ · ρdv

dt
dv +

∫
P

[
(grad ξ)q

]
· v dv +

∫
P
ξ ·
[
(grad v)q

]
dv −

∫
∂P

[
(ξ · v)q

]
· n da

+

∫
P
ξ · dq

dt
dv +

∫
P
ξ · q div v dv −

∫
P
ξ · ρb dv +

∫
P

grad ξ ·Tdv −
∫
∂P

ξ · t da

+

∫
P
ξ · vl div q dv +

∫
P
ξ ·
[
(grad vl)q

]
dv = 0 . (23)

The last two terms on the left-hand side of (23) may be further rewritten with the aid of

integration by parts and the divergence theorem as∫
P
ξ ·vl div q dv+

∫
P
ξ ·
[
(grad vl)q

]
dv =

∫
∂P

[
(ξ ·vl)q

]
·n da−

∫
P

[
(grad ξ)q

]
·vl dv . (24)

This leads to an alternative expression for the weak form of linear momentum balance as∫
P
ξ · ρdv

dt
dv +

∫
P

[
(grad ξ)q

]
· (K gradφ) dv +

∫
P
ξ ·
[
(grad v)q

]
dv

+

∫
P
ξ · dq

dt
dv +

∫
P
ξ · q div v dv −

∫
P
ξ · ρb dv +

∫
P

grad ξ ·T dv

−
∫
∂P

ξ · t da−
∫
∂P

[(
ξ · (K gradφ)

)
q
]
· n da = 0 , (25)

where the liquid velocity is eliminated by using (7).

4.2 Space and time discretization

The finite element approximation is based on the weak forms (21) and (25). Appeal-

ing to the arbitrariness of the test functions ξ and η, these lead to a coupled system of

integro-differential equations with the macroscopic solid displacement u and liquid volume

fraction φ as unknowns. A standard semi-discretization method is employed for the solu-

tion of (21) and (25), where the spatial discretization of u and φ is effected using a standard

displacement-like formulation. This, in turn, gives rise to a coupled system of first- and
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second-order ordinary partial differential equations in time. These are subsequently inte-

grated in a typical time interval (tn, tn+1] using an implicit Newmark scheme [19], such

that

un+1 = un + vn∆tn +
1

2

[
(1− 2β)

dv

dt

∣∣∣
n

+ 2β
dv

dt

∣∣∣
n+1

]
∆t2n

vn+1 = vn +

[
(1− γ)

dv

dt

∣∣∣
n

+ γ
dv

dt

∣∣∣
n+1

]
∆tn

φn+1 = φn +

[
(1− γ)

dφ

dt

∣∣∣
n

+ γ
dφ

dt

∣∣∣
n+1

]
∆tn ,

(26)

where (·)n = (·) |n= (·)(tn), ∆tn = tn+1 − tn, and β, γ are the Newmark parameters.

The resulting nonlinear algebraic equations are solved with the Newton-Raphson method.

This requires consistent linearization of the weak forms with respect to u and φ, which is

derived in the Appendix.

5 Numerical simulations

The finite element formulation of the model described in Section 4 was implemented in

the general-purpose nonlinear program FEAP [20,21]. The model and its numerical imple-

mentation were tested on three representative simulations discussed below. All simulations

employed 8-node isoparametric brick elements with full 2× 2× 2 Gaussian quadrature. In

addition, the time integration parameters defined in Section 4.2 were set to β = 0.25 and

γ = 0.5.

The material properties in the simulations were chosen for Nafion R©, which is suitable for

modeling within the proposed theory, owing to the small size of its pores (with diameter of

20–30 nm [22]) compared to the typical thickness of industrial Nafion R© membranes (0.175

mm [23]). The Nafion R© properties were set to: (λ, µ) = (0.40 × 107, 0.27 × 107) Pa [24],

ρs = 2 × 103 kgr/m3 [24], ρl = 103 kgr/m3, φ̄ = 0.4 [25], K = 1.0 × 10−10 m2/s [26],

and C = 106 Pa. The last parameter was chosen heuristically such that the liquid excess

pressure pl in (10) be in the range of one atmosphere at saturation.

5.1 Stretching of a saturated cube

A 0.5 mm cube made of saturated Nafion R© is stretched uniformly using displacement con-

trol on one face while being fixed on the opposite face and free on all four lateral faces.

Zero liquid flux boundary conditions are enforced on the whole boundary. The imposed
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stretching is applied at time t = 0 and the body is subsequently allowed to reach steady-

state.

A uniform 10× 5× 5 mesh is used to discretize the problem, with the finer resolution

aligned with the direction of stretching (here, the x-direction). Also, time integration is

performed with constant step-size ∆t = 10−6 s.

Figure 4 shows the distribution of the liquid volume fraction along the centerline of the

cube in the x-direction at three different times and for stretch λ = 0.1. At t = 10−6 s, the

body is essentially saturated away from the stretched end, while near this end its liquid

volume fraction exhibits a precipitous drop. At t = 10−5 s, the distribution of the liquid

volume fraction is much smoother reflecting the flow of liquid toward the stretched end

of the body, while at t = 10−4 s the volume fraction is spatially uniform and below the

saturation limit due to the attainment of steady-state.

Next, the cube is stretched in increments of ∆λ = 0.1 up to a total stretch of λ = 0.4.

After each stretch increment, the body is allowed to reach steady-state before the next

increment is imposed. The relation between the liquid volume fraction at steady-state and

the stretch is illustrated in Figure 5 and shows the expected monotonic decrease. The same

figure also depicts the total volume of the liquid, which remains constant throughout the

stretch loading owing to the zero-flux boundary conditions.

5.2 Squeezing of a saturated cube

A 0.5 mm cube of saturated Nafion R© is compressed uniformly on one of its faces using

displacement control, while the opposite face remains fixed and each of the four lateral

faces is free to slide on its own plane only. The liquid may escape from the compressed

face, while all other faces are assumed to be impermeable. The block is initially squeezed

to λs = 93% while keeping the liquid volume fraction to the saturation value of φ = 0.4 on

the compressed face. Then, it is stretched back to its original shape, where it is kept until

the liquid volume fraction reaches steady state. During the stretching and until steady

state is attained, the compressed face is subject to zero liquid flux conditions. Each of

three loading stages is imposed proportionally over a period of 0.1 s.

A uniform 5× 5× 5 mesh is used in this problem and the time step-size is set to 1 ms.

As illustrated in Figure 6, the total volume of the liquid decreases during squeezing, then

remains constant while the body returns to its original configuration. At the same time,

the total volume of the porous medium initially decreases and then increases back to its

original value.
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The same block is subsequently subjected to repeated squeezing and stretching of the

same magnitude and rate as before. In this case, liquid escapes from the solid block

repeatedly until the solid material pushes enough of it out of the block to reach a steady

state of liquid volume fraction. To prevent back-flow into the block, the fixed liquid volume

fraction boundary condition on the compressed face during squeezing is chosen to be equal

to the minimum of the current steady-state liquid volume fraction and the asymptotic

liquid volume fraction φa at maximum squeezing. The latter is equal, in this case, to

φa =
λsV − (1− φ̄)V

λsV
=

0.93− (1− 0.4)

0.93

.
= 0.35 , (27)

where V denotes the initial volume of the block. The preceding definition is predicated upon

the assumption that the solid matter (being hyperelastic) returns to its original volume

when the liquid volume reaches a steady value after a sufficient number of squeezes. The

results of this numerical simulation are illustrated in Figure 7, where it is specifically shown

that this steady volume of liquid is reached after only three successive squeezes.

5.3 Flexure of a Nafion R© film due to water absorption

It has been experimentally observed that when placing a water droplet on a dry thin film

made of Nafion R©, the region surrounding the droplet initially exhibits a bulge, which later

disappears as the water evaporates and/or is diffused into the film [2]. To simulate this

experiment, a water droplet is idealized by means of a prescribed liquid volume fraction

boundary condition on a square region with 3 mm side at the center of the top surface of a

10×10×0.125 mm Nafion R© block. The latter is fixed on all of its four lateral faces and zero

liquid flux boundary condition is imposed on all boundaries except for the droplet region.

The supply of water is terminated at t = 450 s, at which time the Dirichlet boundary

condition φ = φ̄ on the droplet region is replaced by a corresponding zero liquid flux

condition. No attempt is made here to account for evaporation.

A uniform 20 × 20 × 5 mesh is used for the analysis, and symmetry is exploited in

modeling only a quarter of the domain. Also, the time step-size is set to 0.2 s.

Figure 8 illustrates the flexure of the film at the center of water droplet for three

different values of the liquid pressure constant C of equation (10). This is done to explore

the predictive range of this variable, which, as stated earlier, is chosen without direct

experimental evidence. It is noted that maximum flexure in the range of approximately

0.35 mm to 0.51 mm is achieved at t = 450 s. After the water supply is terminated, the

flexure starts decreasing with time. As seen in Figure 8, the maximum flexure increases
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with C, but the rate of its decrease after t = 450 sec appears to be independent of C. A

contour plot of the transverse displacement at t = 450 s is illustrated in Figure 9 on the

deformed configuration. These results are both qualitatively and quantitatively consistent

with the experimental findings in [2], although the rate of decrease in the maximum flexure

appears to be significantly slower in the simulations.

6 Conclusions

The principal goal of this study is to enable the modeling of liquid flow in elastic porous

solids undergoing finite deformation in the presence of time- and space-varying liquid con-

centration. The proposed continuum-mechanical model satisfies the preceding imperatives,

while allowing for the imposition of meaningful boundary conditions on displacement and

liquid concentration. In addition, the model lends itself to straightforward and relatively

efficient implementation using the finite element method. On the latter point, the choice

of state variables leads to only one extra degree of freedom (the liquid volume fraction)

per node, since the proposed formulation of the governing equations results in the elim-

ination of the liquid velocity from the system of equations. Further, treating the liquid

volume fraction as state variable facilitates the tracking of the liquid flow and permits the

identification of regions of dry, partial or full saturation.

The numerical simulations on Nafion R© demonstrate the predictive power of the pro-

posed model and its intuitively correct response to simple loading conditions, such as

stretching and squeezing under saturated conditions. In particular, the stretching simu-

lation shows that the liquid redistributes itself in the pores at a lower concentration by

conserving the total liquid mass. Likewise, the squeezing simulation demonstrates that

liquid exits the porous solid leading to a lower asymptotic uniform concentration. Also,

the proposed model captures the flexure of a Nafion R© film caused by a droplet of water on

top surface, and even provides quantitatively correct for both maximum flexure and time

to achieve the maximum flexure.

There exist still two items that merit further attention in connection with the proposed

model. First, the constitutive relation between liquid pressure and liquid volume fraction

is postulated to be linear and may not adequately represent the actual physics, especially

when the porous solid is close to full saturation. Second, the porosity is taken to be

independent of deformation, which may not be accurate under very large deformations.

Both items will be addressed in subsequent work.

13



Liquid diffusion through porous elastic solid

Acknowledgments

This work was supported in part by an Academic Excellence Alliance grant awarded by

the KAUST Office of Competitive Research Fund under the title “An Integrated Theoret-

ical and Computational Study of Certain Mechanical and Chemical Properties of Nafion

Membranes”.

Appendix: Consistent Linearization of the Balance Laws

In this appendix, expressions are recorded for the consistent element tangent stiffness ma-

trix required by the Newton-Raphson method to determine the nodal displacements and

pressures from the weak forms (21) and (25) in conjunction with the time integration equa-

tions (26). To this end, let the element interpolations at time tn+1 be given by un+1 =∑N
I=1NI ûIn+1 , φn+1 =

∑N
I=1NI φ̂In+1 , ξn+1 =

∑N
J=1NJ ξ̂Jn+1

, ηn+1 =
∑N

J=1NJ η̂Jn+1 ,

where NI , I = 1, 2, . . . , N , denote the I-th element interpolation function and the super-

script “(̂·)I” signifies the value of a variable (·) at node I. For brevity, the subscript n+ 1

is suppressed in the remainder of the appendix.

The linearization of the weak forms (21) and (25) for a typical element e gives rise to

a tangent stiffness matrix of the form

[
K
]

=

[Kφu
] [

Kφφ
][

Kuu
] [

Kuφ
]
 , (A.1)

where the N × 3N submatrix
[
Kφu

]
and the N × N submatrix

[
Kφφ

]
result from the

linearization of the mass balance equation (21) in the direction of û and φ̂, respectively.

Likewise, the 3N × 3N submatrix
[
Kuu

]
and the 3N ×N submatrix

[
Kuφ

]
are due to the

linearization of the momentum balance equation (25) along the same directions.

Taking into account (21) and (26), it can be easily shown that

Kφu
I(jJ) =

γ

β∆t

∫
Ωe

ρlφNINJ,j dv (A.2)

and

Kφφ
IJ =

1

γ∆t

∫
Ωe

ρlNINJ dv+

∫
Ωe

ρlNINJ div v dv+

∫
Ωe

Kρl

3∑
k=1

(NI,k(φNJ,k +NJφ,k) dv ,

(A.3)

where j, k = 1, 2, 3 are spatial coordinate indices, NI,j is the partial derivative of NI with

respect to the spatial coordinate xj , and Ωe is the element domain.
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Correspondingly, starting from (25) and (26), it is found that

Kuu
(iI)(jJ) =

1

β∆t2

∫
Ωe

NIρNJδij dv +
γ

β∆t

∫
Ωe

(

3∑
k=1

NIqkNJ,k)δij dv

+
γ

β∆t

∫
Ωe

NIqiNJ,j dv +Km
(iI)(jJ) (A.4)

and

Kuφ
(iI)J =

∫
Ωe

NIρlNJ
dvi
dt

dv +

∫
Ωe

K
3∑

k=1

(−Kρlφ,iNI,k(NJφ,k + φNJ,k) +NI,iNJ,kqk) dv

−
∫

Ωe

KρlNI

3∑
k=1

(vi,k(φNJ,k +NJφ,k)) dv −
∫

Ωe

KρlNI(φNJ,i +NJφ,i) div v dv

−
∫

Ωe

KρlNI(NJ
dφ,i
dt

+
1

γ∆t
φNJ,i +

1

γ∆t
NIφ,i +

dφ

dt
NJ,i) dv , (A.5)

where i, j, k = 1, 2, 3 are spatial coordinate indices. Also, Km
(iI)(jJ) denotes the material

tangent stiffness emanating from the stress-divergence term in (25).
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Figure 1: Multiscale modeling and homogenization
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Figure 2: Motion of homogenized body
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Figure 3: Partially saturated porous medium
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Figure 4: Stretching of a saturated cube: Liquid volume fraction at the nodes along the
centerline of the stretch direction at different times (nodes are indexed from 1 to 11 with
the latter being on the stretched side)
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Figure 5: Stretching of a saturated cube: Liquid volume fraction at steady-state as a
function of stretch (top) and conservation of liquid volume (bottom)

22



Q. Zhao and P. Papadopoulos

4.6

4.8

5

50 100 150 200 250 300
0.36

0.38

0.4

time (ms)

vo
lu

m
e

of
li

q
u

id
(m

3
)

×10−11

li
q
u

id
vo

lu
m

e
fr

ac
ti

on

1.15

1.17

1.19

1.21

1.23

1.25

50 100 150 200 250 300

time (ms)

to
ta

l
vo

lu
m

e
(m

3
)

×10−11

×10−10

liquid volume
liquid volume fraction

Figure 6: Squeezing of a saturated cube: Liquid and total volume as a function of time
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Figure 7: Squeezing of a saturated cube: Liquid and total volume as a function of time for
the case of repeated squeezing
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Figure 8: Flexure of a Nafion R© film due to water absorption: History of maximum flexure
for three different values of the liquid pressure constant C
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Figure 9: Flexure of a Nafion film, in meters, due to water absorption: Deformed config-
uration and contour plot of transverse displacement (note that the displacement is scaled
by a factor of 5)
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