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Chapter 1

Introduction

1.1 Solids and fluids as continuous media

All matter is inherently discontinuous, as it is comprised of distinct building blocks, the

molecules. Each molecule consists of a finite number of atoms, which, in turn, consist of

finite numbers of nuclei and electrons.

Many important physical phenomena involve matter in large length and time scales.

This is generally the case when matter is considered at length scales much larger than

the characteristic length of the atomic spacings and at time scales much larger than the

characteristic times of atomic bond vibrations. The preceding characteristic lengths and

times can vary considerably depending on the state of the matter (e.g., temperature, precise

composition, deformation). However, one may broadly estimate such characteristic lengths

and times to be of the order of up to a few angstroms (1 Å=10−10 m) and a few femtoseconds

(1 fsec=10−15 sec), respectively. As long as the physical problems of interest occur at length

and time scales of several orders of magnitude higher than those noted previously, it is

generally possible to consider matter as a continuous medium, namely to effectively ignore

its discrete nature without introducing substantial modeling errors.

A continuous medium may be conceptually defined as a finite amount of matter whose

physical properties are independent of its actual size or the time over which they are mea-

sured. In an idealized sense, one may envision a continuous medium as being “infinitely

divisible” and “locally homogeneous”. To describe these qualities by a thought experiment,

one may imagine successively dissecting a continuous medium into smaller and smaller parts.

In such a case, the physical properties of a continuous medium would remain unaltered no
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2 Introduction

matter how small the part. Mathematical theories developed for continuous media (or “con-

tinua”) are frequently referred to as “phenomenological”, in the sense that they capture the

observed physical response without directly accounting for the discrete structure of matter.

Solids and fluids (including both liquids and gases) can be accurately viewed as continuous

media in many occasions. Continuum mechanics is concerned with the response of solids

and fluids under external loading precisely when they can be viewed as continuous media.

1.2 History of continuum mechanics

Continuum mechanics is a modern discipline that unifies solid and fluid mechanics, two of the

oldest and most widely examined disciplines in applied science. It draws on classical scientific

developments that go at least as far back as the Hellenistic-era work of Archimedes1 on the

law of the lever and on hydrostatics. It is stimulated by the imagination and creativity of L.

da Vinci2 and propelled by the rigid-body gravitational motion experiments of Galileo3. It

is mathematically founded on the laws of motion put forth by I. Newton4 in his monumental

1687 work titled Philosophiae Naturalis Principia Mathematica (Mathematical Principles of

Natural Philosophy), which is reasonably considered the first axiomatic treatise on mechan-

ics. These laws are substantially extended and set on firmer theoretical ground by L. Euler5

and further developed and refined by A.-L. Cauchy6, who, among other accomplishments, is

credited with introducing the concepts of strain and stress.

Figure 1.1. From left to right: Portraits of Archimedes, da Vinci, Galileo, Newton, Euler and

Cauchy

1Archimedes of Syracuse (287–212 BC) was a Greek mathematician and engineer.
2Leonardo da Vinci (1452–1519) was an Italian painter, architect, scientist and engineer.
3Galileo Galilei (1564–1642) was an Italian scientist.
4Sir Isaac Newton (1643–1727) was an English physicist and mathematician.
5Leonhard Euler (1707–1783) was a Swiss mathematician and physicist.
6Baron Augustin-Louis Cauchy (1789–1857) was a French mathematician.
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History of continuum mechanics 3

Continuum mechanics as practiced and taught today emerged largely in the latter half

of the 20th century. This “renaissance” period can be attributed to several factors, such

as the flourishing of relevant mathematics disciplines (particularly linear algebra, partial

differential equations and differential geometry), the advances in materials and mechani-

cal systems technologies, and the increasing availability (especially since the late 1960s) of

high-performance computers. A wave of gifted modern-day mechanicians contributed to the

rebirth and consolidation of classical mechanics into this new discipline of continuum me-

chanics, which emphasizes generality, rigor and abstraction, yet derives its essential features

from the physics of material behavior and the practice of natural and engineered systems.

ME185



Chapter 2

Mathematical Preliminaries

A brief, self-contained exposition of relevant mathematical concepts is provided in this chap-

ter by way of background to the ensuing developments.

2.1 Elements of set theory

A set X is a collection of objects referred to as elements. A set can be defined either by

the properties of its elements or by merely identifying all elements. For example, one may

define X = {1, 2, 3, 4, 5} or, equivalently, X = {all integers greater than 0 and less than 6}.
If x is an element of the set X, one writes x ∈ X. If not, one writes x /∈ X. Some sets of

particular interest in the remainder of these notes are N = {all positive integer numbers},
Z = {all integer numbers}, and R = {all real numbers}.

Let X, Y be two sets. The set X is a subset of the set Y (denoted X ⊆ Y or Y ⊇ X)

if every element of X is also an element of Y . The set X is a proper subset of the set Y

(denoted X ⊂ Y or Y ⊃ X) if every element of X is also an element of Y , but there exists

at least one element of Y that does not belong to X.

The union of sets X and Y (denoted X ∪ Y ) is the set which is comprised of all elements

of both sets. The intersection of sets X and Y (denoted X ∩ Y ) is a set which includes

only the elements common to the two sets. The empty set (denoted ∅) is a set that contains

no elements and is contained in every set, therefore X ∪ ∅ = X. Also, the (set-theoretic)

difference of a set Y from another set X (denoted X\Y ) consists of all elements in X which

do not belong to Y . If X ⊆ Y , then the complement of X relative to Y is defined as

Xc = Y \X.

4



Mappings 5

The Cartesian product X × Y of sets X and Y is a set defined as

X × Y =
{
(x, y) such that x ∈ X, y ∈ Y

}
. (2.1)

Note that the pair (x, y) in the preceding equation is ordered, that is, the element (x, y) is, in

general, not the same as the element (y, x). The notation X2, X3, . . ., is used to respectively

denote the Cartesian products X ×X, X ×X ×X, . . ..

Example 2.1.1: The n-dimensional real coordinate set
Define the set Rn as

R
n = R× R . . .× R

︸ ︷︷ ︸

n times

,

where n ∈ N. This is the set of the n-dimensional real coordinates. The two-dimensional set R
2 and the

three-dimensional set R3 will be used widely in these notes.

2.2 Mappings

Let U , V be two sets and define a mapping f from U to V as a rule that assigns to each

point u ∈ U a unique point v = f(u) ∈ V , see Figure 2.1. The usual notation for a mapping

is: f : U → V , u → v = f(u) ∈ V . With reference to the above setting, U is called the

domain of f , whereas V is termed the range of f .

U V

f

u v

Figure 2.1. Mapping between two sets

Given mappings f : U → V , u → v = f(u) and g : V → W , v → w = g(v), the

composition mapping g ◦ f is defined as g ◦ f : U → W , u → w = g(f(u)), as in Figure 2.2.
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6 Mathematical preliminaries

U V W

f g

g ◦ f

u
v

w

Figure 2.2. Composition mapping g ◦ f

2.3 Vector spaces

Consider a set V whose members (typically called “points”) can be scalars, vectors or func-

tions, visualized in Figure 2.3. Assume that V is endowed with an addition operation (+)

and a scalar multiplication operation (·), which do not necessarily coincide with the classical

addition and multiplication for real numbers.

A "point" that

belongs to 

V
V

Figure 2.3. Schematic depiction of a set

A vector (or linear) space {V ,+;R, ·} is defined by the following properties for any u,v,w ∈
V and α, β ∈ R:

(i) α · u+ β · v ∈ V (closure),

(ii) (u+ v) +w = u+ (v +w) (associativity with respect to + ),

(iii) ∃ 0 ∈ V | u+ 0 = u (existence of null element),

(iv) ∃ − u ∈ V | u+ (−u) = 0 (existence of negative element),

(v) u+ v = v + u (commutativity),
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(vi) (αβ) · u = α · (β · u) (associativity with respect to ·),

(vii) (α + β) · u = α · u+ β · u (distributivity with respect to R),

(viii) α · (u+ v) = α · u+ α · v (distributivity with respect to V),

(ix) 1 · u = u (existence of identity).

Example 2.3.1: Linearity of spaces

(a) V = P2 =
{
all second degree polynomials ax2 + bx+ c

}
with the standard polynomial addition and

scalar multiplication.

It can be trivially verified that {P2,+;R, ·} is a linear function space. P2 is also “equivalent” to an
ordered triad (a, b, c) ∈ R

3.

(b) V =Mm,n(R), where Mm,n(R) is the set of all m× n matrices whose elements are real numbers. This
set is a linear space with the usual matrix addition and scalar multiplication operations.

(c) Define V =
{
(x, y) ∈ R

2 | x2 + y2 = 1
}
with the standard addition and scalar multiplication for vectors.

Notice that given u with coordinates (x1, y1) and v with coordinates (x2, y2), as in the figure,

x

y

u

v

1

u+ v

property (i) is violated, since, in general, for α = β = 1, u + v has coordinates (x1 + x2 , y1 + y2)
and (x1 + x2)

2 + (y1 + y2)
2 6= 1. Thus, {V,+;R, ·} is not a vector space.

Henceforth, the terms “linear” and “vector” space will be used interchangeably.

Consider a linear space {V ,+;R, ·} and a subset U of V . Then U forms a linear subspace

of V with respect to the same operations (+) and (·), if, for any u,v ∈ U and α, β,∈ R,

α · u + β · v ∈ U ,

that is, closure is maintained within U .

Example 2.3.2: Subspace of a linear space
Define the set Pn of all algebraic polynomials of degree smaller or equal to n > 2 and consider the linear
space {Pn,+;R, ·} with the usual polynomial addition and scalar multiplication. Then, {P2,+;R, ·} is a linear
subspace of {Pn,+;R, ·}.
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8 Mathematical preliminaries

To simplify the notation, in the remainder of these notes the symbol “·” used in scalar

multiplication will be omitted.

Let v1,v2, . . . ,vp be elements of the vector space {V ,+;R, ·} and assume that

α1v1 + α2v2 + . . .+ αpvp = 0 ⇔ α1 = α2 = ... = αp = 0 . (2.2)

Then, {v1,v2, . . . ,vp} is termed a linearly independent set in V . The vector space {V ,+;R, ·}
is infinite-dimensional if, given any n ∈ N, it contains at least one linearly independent set

with n + 1 elements. If the above statement is not true, then there is an n ∈ N, such that

all linearly independent sets contain at most n elements. In this case, {V ,+;R, ·} is a finite

dimensional vector space (specifically, n-dimensional).

A basis of an n-dimensional vector space {V ,+;R, ·} is defined as any set of n linearly

independent vectors. If {g1,g2, . . . ,gn} form a basis in {V ,+;R, ·}, then given any non-zero

v ∈ V ,

α1g1 + α2g2 + . . .+ αngn + βv = 0 ⇔ not all α1, . . . , αn, β equal zero . (2.3)

Specifically, β 6= 0 because otherwise there would be at least one non-zero αi, i = 1, . . . , n,

which would have implied that {g1,g2, . . . ,gn} are not linearly independent. It follows that

the non-zero vector v can be expressed as

v = −α1

β
g1 −

α2

β
g2 − . . .− αn

β
gn , (2.4)

which shows that any vector v ∈ V can be written as a linear combination of the basis

{g1,g2, . . . ,gn}. Moreover, the above representation of v is unique. Indeed, if, alternatively,

v = γ1g1 + γ2g2 + . . .+ γngn , (2.5)

then, upon subtracting the preceding two equations from one another, it follows that

0 =

(

γ1 +
α1

β

)

g1 +

(

γ2 +
α2

β

)

g2 + . . .+

(

γn +
αn

β

)

gn , (2.6)

which implies that γi = −αi

β
, i = 1, 2, . . . , n, since {g1,g2, . . . ,gn} are assumed to be linearly

independent.

Of all the vector spaces, attention will be focused here on the particular class, in which

a vector multiplication operation (·) is defined, such that, for any u,v,w ∈ V and α ∈ R,

(x) u · v = v · u (commutativity with respect to ·),
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(xi) u · (v +w) = u · v + u ·w (distributivity with respect to +),

(xii) (αu) · v = u · (αv) = α(u · v) (associativity with respect to ·)

(xiii) u · u ≥ 0 and u · u = 0 ⇔ u = 0.

This vector operation is referred to as the dot product. An n-dimensional vector space

obeying the above additional rules is referred to as a Euclidean vector space and is de-

noted En.

Example 2.3.3: Dot product between vectors
The standard dot product between vectors in R

n satisfies the properties (x)-(xiii) above.

The dot product provides a natural means for defining the magnitude of a vector as

|u| = (u · u)1/2 . (2.7)

Two vectors u,v ∈ En are orthogonal if u · v = 0. A set of vectors {u1,u2, . . .uk} is

called orthonormal if they are mutually orthogonal and of unit magnitude. This implies

that, for all i, j = 1, 2, . . . , k,

ui · uj = δij =

{

0 if i 6= j

1 if i = j
, (2.8)

where δij is called the Kronecker1 delta symbol. Note that, by its definition, δij = δji, that

is, the Kronecker delta symbol is symmetric in its two indices.

Every orthonormal set {e1, e2, . . . , ek}, k ≤ n, in En is linearly independent. This is

because, if

α1e1 + α2e2 + . . . + αkek = 0 , (2.9)

then, upon taking the dot product of the above equation with any ei, i = 1, 2, . . . , k, and

invoking the orthonormality of {e1, e2, . . . , ek},

α1(e1 · ei) + α2(e2 · ei) + . . .+ αk(ek · ei) = αi = 0 . (2.10)

It is always possible to construct an orthonormal basis in En, although the process of

doing so is not described here. Of particular importance to the forthcoming developments

1Leopold Kronecker (1823–1891) was a German mathematician.

ME185
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is the observation that, as already argues, any vector v ∈ En can be uniquely resolved on

such an orthonormal basis {e1, e2, . . . , en} as

v = v1e1 + v2e2 + . . .+ vnen =
n∑

i=1

viei , (2.11)

such that, here, vi = v ·ei. In this case, vi denotes the i-th Cartesian component of v relative

to the orthonormal basis {e1, e2, . . . , en}.

Example 2.3.4: Components of vector on different bases
Consider a vector v ∈ E3, which is resolved on an orthonormal basis {e1, e2, e3} in the form v = e1−2e2+3e3.
If one chooses a different basis, say, {g1,g2,g3}, where g1 = e1+e2, g2 = e2+e3, g3 = e3+e1, then denote
the components of v relative to the new basis (a1, a2, a3). Therefore,

v · e1 = 1 = a1g1 · e1 + a2g2 · e1 + a3g3 · e1 = a1 + a2

v · e2 = −2 = a1g1 · e2 + a2g2 · e2 + a3g3 · e2 = a2 + a3 .

v · e3 = 3 = a1g1 · e3 + a2g2 · e3 + a3g3 · e3 = a3 + a1

Upon solving the preceding algebraic system, one finds that a1 = −2, a2 = 0, and a3 = 3.

It is important to emphasize here that a vector is equivalent to its components. Rather,

the components are an expression of the vector relative to a chosen basis.

The dot product between two vectors u and v can be expressed using components relative

to an orthonormal basis {e1, e2, . . . , en} as

u·v =

(
n∑

i=1

uiei

)

·
(

n∑

j=1

vjej

)

=
n∑

i=1

n∑

j=1

uivj(ei·ej) =
n∑

i=1

n∑

j=1

uivjδij =
n∑

i=1

uivi , (2.12)

where use is made of (2.8) and property (xii) of Euclidean vector spaces.

2.4 Points, vectors and tensors in the Euclidean 3-

space

Consider the Euclidean space E3 (the Euclidean 3-space) with an orthonormal basis {e1, e2, e3}.
As argued in the previous section, a typical vector v ∈ E3 can be written as

v =
3∑

i=1

viei , vi = v · ei . (2.13)

Next, consider points x, y in the Euclidean point space E3, which is the set of all points in
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x

yx

y

v

O

Figure 2.4. Points and associated vectors in three dimensions

the ambient three-dimensional space, when taken to be devoid of the mathematical structure

of vector spaces. Also, consider an arbitrary, but fixed, origin (or reference point) O in the

same space, as in Figure 2.4. It is now possible to define vectors x,y ∈ E3, which originate

at O and end at points x and y, respectively. In this way, one makes a unique association (to

within the specification of O) between points in E3 and vectors in E3. Further, it is possible

to define a measure d(x,y) of distance between x and y, by way of the magnitude of the

vector v = y − x, namely

d(x,y) = |y − x| = [(y − x) · (y − x)]1/2 . (2.14)

Given any point x ∈ E3 , one may identify the neighborhood Nr(x) of x with ra-

dius r > 0 as the set of points y for which d(x,y) < r, or, in mathematical notation,

Nr(x) = {y ∈ E3 | d(x,y) < r}, see Figure 2.5. Then, a subset P of E3 is termed open if,

for each point x ∈ P , there exists a neighborhood Nr(x) which is fully contained in P . The

complement Pc of an open set P relative to E3 is, by definition, a closed set. The closure of

a set P , denoted P , is defined as the smallest closed set that contains P .

E3

x

Nr(x)

r

Figure 2.5. The neighborhood Nr(x) of a point x in E3.
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12 Mathematical preliminaries

Example 2.4.1: Open and closed sets in E1

Consider the Euclidean space E1 consisting of all real numbers, equipped with the usual measure of distance
between points x and y, that is, the absolute value |y − x|.

(a) The set
{
x ∈ E1, 0 < x < 1

}
= (0, 1) is open.

(b) The set
{
x ∈ E1, 0 ≤ x ≤ 1

}
= [0, 1] is closed.

(c) The set
{
x ∈ E1, 0 ≤ x < 1

}
= [0, 1) is neither open nor closed.

(d) The set E1 is both open and closed.

In E3, one may also define the cross product of two vectors as an operation with the

properties that for any vectors u, v and w,

(a) u× v = −v × u (anticommutativity),

(b) (u×v)·w = (v×w)·u = (w×u)·v, or, equivalently [u,v,w] = [v,w,u] = [w,u,v],

where [u,v,w] = (u× v) ·w is the scalar triple product of vectors u, v, and w,

(c) |u× v| = |u||v| sin θ , cos θ =
u · v
|u||v| , 0 ≤ θ ≤ π.

Appealing to either property (a) or (c), it is readily concluded that u×u = 0. Likewise,

properties (a) and (b) can be used to deduce that (u× v) ·u = (u× v) · v = 0, namely that

the vector u × v is orthogonal to both u and v, hence is normal to the plane formed by u

and v.

With reference to property (b) above, an orthonormal basis {e1, e2, e3} is right-hand if

[e1, e2, e3] = 1. With the aid of (c) above, this, in turn, necessarily implies that

e1 × e2 = e3 , e2 × e3 = e1 , e3 × e1 = e2 . (2.15)

These relations, together with the conditions

e1 × e1 = e2 × e2 = e3 × e3 = 0 (2.16)

and

e2 × e1 = −e3 , e3 × e2 = −e1 , e1 × e3 = −e2 , (2.17)

which are deduced from (2.15) and property (a), can be expressed compactly as

ei × ej =
3∑

k=1

ǫijkek , (2.18)
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where i, j = 1, 2, 3 and ǫijk is the permutation symbol (or Levi-Civita2 symbol) defined as

ǫijk =







1 if (i, j, k) = (1,2,3), (2,3,1), or (3,1,2)

−1 if (i, j, k) = (2,1,3), (3,2,1), or (1,3,2)

0 otherwise

. (2.19)

By its definition, the permutation symbol satisfies the cyclic property ǫijk = ǫjki = ǫkij, as

well as the property ǫijk = −ǫjik = −ǫikj = −ǫkji.

With the aid of (2.18) it follows that

u×v =

(
3∑

i=1

uiei

)

×
(

3∑

j=1

vjej

)

=
3∑

i=1

3∑

j=1

uivjei×ej =
3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek . (2.20)

A mapping T : E3 → E3 is called linear if it satisfies the property

T(αu+ βv) = αT(u) + βT(v) , (2.21)

for all u,v ∈ E3 and α, β ∈ R. A linear mapping T : E3 → E3 is also referred to as a tensor.

Example 2.4.2: Special tensors

(a) T : E3 → E3, T(v) = v for all v ∈ E3. This is called the identity tensor, and is typically denoted
T = i.

(b) T : E3 → E3, T(v) = 0 for all v ∈ E3. This is called the zero tensor, and is typically denoted T = 0.

Example 2.4.3: Mappings that are not tensors

(a) T : E3 → E3, T(v) = v+ c for all v ∈ E3, where c is a constant vector, is not a tensor, as it violates
the linearity condition (2.21).

(b) T : E3 → E3, T(v) =
v

|v| for all v ∈ E3 is not a tensor, as it again violates (2.21).

For notational simplicity, a linear mapping T on a vector v will henceforth be denoted

Tv rather than T(v).

The tensor product between two vectors v and w in E3 is denoted v ⊗ w and defined

according to the relation

(v ⊗w)u = (w · u)v , (2.22)

for any vector u ∈ E3. This implies that, under the action of the tensor product v⊗w, the

vector u is mapped to the vector (w · u)v. It can be easily verified that v ⊗w is a tensor

2Tullio Levi-Civita (1873–1941) was an Italian mathematician.
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according to the definition in (2.21), see Exercise 2-10. Using the Cartesian components of

vectors, one may invoke (2.21) to express the tensor product of v and w as

v ⊗w = (
3∑

i=1

viei)⊗ (
3∑

j=1

wjej) =
3∑

i=1

3∑

j=1

viwjei ⊗ ej . (2.23)

It will be shown shortly that the set of nine tensor products {ei ⊗ ej, i, j = 1, 2, 3}, form a

basis for the space L(E3, E3) of all tensors on E3.

Before proceeding further with the discussion of tensors, it is expedient to introduce a

summation convention, which will greatly simplify the component representation of both

vectorial and tensorial quantities and their associated algebra and calculus. This convention

originates with A. Einstein3, who employed it first in his work on the theory of relativity.

The summation convention has three rules, which, when adapted to the special case of E3,

are as follows:

Rule 1. If an index appears twice in a single component term or product expression, the

summation sign is omitted and summation is automatically assumed from value 1 to 3.

Such an index is referred to as dummy.

Rule 2. An index which appears once in a single component term or product expression is

not summed and is assumed to attain a value 1, 2, or 3. Such an index is referred to

as free.

Rule 3. No index can appear more than twice in a single component term or product

expression.

Example 2.4.4: Summation convention

(a) The vector representation u =
3∑

i=1

uiei is replaced by u = uiei, where i is a dummy index.

(b) The dot product between two vectors u and v, defined as u · v =

3∑

i=1

uivi is equivalently written as

uivi, where i is a dummy index.

(c) The cross product u × v =

3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek is equivalently written as u × v = ǫijkuivjek and

involves the summation of twenty-seven terms (although not all of them are non-zero).

3Albert Einstein (1879–1955) was a German-born American physicist.
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(d) The tensor product u ⊗ v =

3∑

i=1

3∑

j=1

uivjei ⊗ ej is equivalently written as u ⊗ v = uivjei ⊗ ej and

involves the summation of nine terms. Here, both i and j are dummy indices.

(e) The term uivj involves no summation and has two free indices, i and j.

(f) It is easy to see that δijui = δ1ju1 + δ2ju2 + δ3ju3 = uj . This index substitution property is used very
frequently in component manipulations.

(g) An index substitution property also applies in the case of a two-index quantity aik, namely δijaik =
δ1ja1k + δ2ja2k + δ3ja3k = ajk.

(h) The term aijbjkcj violates the third rule of the summation convention, since the index j appears thrice
in a product.

(i) The equality aij = bik is meaningless because there is inconsistency of free indices between the left- and
right-hand sides.

(j) The scalar triple product [u,v,w] can be expressed in component form as

(u× v) ·w =





3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek



 ·
(

3∑

l=1

wlel

)

=

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

ǫijkuivjwl(ek · el)

=

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

ǫijkuivjwlδkl

=

3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjwk ,

where use is made of (2.8) and the substitution property of part (f). When enforcing the summation
convention, the scalar triple product is equivalently written as ǫijkuivjwk.

With the summation convention in place, take a tensor T ∈ L(E3, E3) and define its

components Tij , such that

Tej = Tijei , (2.24)

hence

Tij = ei ·Tej . (2.25)

The last equation provides a rule for extracting the components of T on a given orthonormal
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basis. It follows that, for any v ∈ E3,

(T− Tijei ⊗ ej)v = (T− Tijei ⊗ ej)vkek

= Tekvk − Tijvk(ei ⊗ ej)ek

= Tikeivk − Tijvk(ej · ek)ei
= Tikvkei − Tijvkδjkei

= Tikvkei − Tikvkei

= 0 , (2.26)

where use is made of (2.22), (2.24), and the substitution property of the Kronecker delta

function. Since v is arbitrary, it follows that

T = Tijei ⊗ ej . (2.27)

This derivation demonstrates that any tensor T can be written as a linear combination of

the nine tensor product terms {ei ⊗ ej, i, j = 1, 2, 3}. Therefore, the latter terms form a

basis for the linear space of tensors L(E3, E3). The components of the tensor T relative to

{ei ⊗ ej, i, j = 1, 2, 3} can be put in matrix form as

[Tij] =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 . (2.28)

The preceding derivation also reveals that, when using components,

Tv = Tijvjei . (2.29)

This means that the component representation of Tv relative to a given basis amounts to

the multiplication of the 3×3 matrix [Tij ] by the 3×1 array [vj] comprising the components

of the vector v.

Example 2.4.5: Component form of special tensors

(a) The identity tensor i is represented on the basis {ei ⊗ ej} as i = ei ⊗ ei. Indeed, for any v ∈ E3,

(ei ⊗ ei)v = (ei · v)ei = viei = v .

Therefore, the components of the identity tensor form a 3× 3 identity matrix.

(b) All the components of the zero tensor 0 on the basis {ei ⊗ ej} are zero.
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It is important to stress here that tensors are not merely matrices, just as vectors are

not just one-dimensional arrays. Tensors are linear mappings in E3, which are represented

by components relative to a given basis. Therefore, the components of a tensor in a matrix

do not define the tensor, but rather they represent it on a given basis.

The transpose TT of a tensor T is defined by the property

u ·Tv = v ·TTu , (2.30)

for any vectors u,v ∈ E3. Using components, this implies that

uiTijvj = viAijuj = vjAjiui , (2.31)

where Aij are the components of TT , that is TT = Aijei ⊗ ej. It follows from (2.31) that

ui(Tij − Aji)vj = 0 . (2.32)

Since ui and vj are arbitrary, this implies that Aij = Tji, hence the transpose of T can be

written as

TT = Tjiei ⊗ ej = Tijej ⊗ ei . (2.33)

It may be concluded from (2.33) that the transpose of a tensor T = Tijei⊗ej is obtained by

either transposing the matrix of the components while keeping the basis intact or by keeping

the components intact while switching the order of the two unit vectors in the tensor product.

A tensor T is symmetric if TT = T or, when both T and TT are resolved on the same

basis, Tji = Tij. This means that a symmetric tensor has only six independent components.

Likewise, a tensor T is skew-symmetric if TT = −T or, again, upon resolving both on the

same basis, Tji = −Tij. Note that, in this case, T11 = T22 = T33 = 0 and the skew-symmetric

tensor has only three independent components. This suggests that there exists a one-to-

one correspondence between skew-symmetric tensors and vectors in E3. To establish this

correspondence, consider a skew-symmetric tensor W and observe that

W =
1

2
(W −WT ) . (2.34)

Therefore, when W operates on any vector z ∈ E3,

Wz =
1

2
Wij(ei ⊗ ej − ej ⊗ ei)z

=
1

2
Wij[(z · ej)ei − (z · ei)ej] . (2.35)
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Recalling the identity u × (v ×w) = (u ·w)v − (u · v)w (see Exercise 2-8), the preceding

equation can be rewritten as

Wz =
1

2
Wij[z× (ei × ej)]

= − 1

2
Wij[(ei × ej)× z]

=
1

2
Wji[(ei × ej)× z]

=

(
1

2
Wjiei × ej

)

× z

= w × z , (2.36)

where the vector w is defined as

w =
1

2
Wjiei × ej (2.37)

and is called the axial vector of the skew-symmetric tensor W. In view of the arbitrariness

of z in (2.36), one may use components to write W in terms of w and vice-versa. Specifically,

starting from (2.37),

w = wkek =
1

2
Wjiei × ej =

1

2
Wjiǫijkek , (2.38)

hence, in component form,

wk =
1

2
ǫijkWji (2.39)

or, using matrices,

[wk] =
1

2






W32 −W23

W13 −W31

W21 −W12




 . (2.40)

Conversely, starting from (2.36),

Wijzjei = (wkek)× (zjej) = ǫkjiwkzjei , (2.41)

so that, in component form,

Wij = ǫkjiwk (2.42)

or, again, using matrices,

[Wij] =






0 −w3 w2

w3 0 −w1

−w2 w1 0




 . (2.43)
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A tensor T is positive-definite if v ·Tv ≥ 0 for all vectors v ∈ E3 and v ·Tv = 0 if, and

only if, v = 0. It is easy to show that positive-definiteness of a tensor T is equivalent to

positive-definiteness of the matrix [Tij ] of its components relative to any basis.

Given tensors S,T ∈ L (E3, E3), the tensor addition S +T : L(E3, E3) × L(E3, E3) 7→
L(E3, E3) is defined by the property

(S+T)v = Sv +Tv , (2.44)

for any v ∈ E3. This implies that the components of the resulting tensor are Sij + Tij .

Likewise, the tensor multiplication ST : L(E3, E3) × L(E3, E3) 7→ L(E3, E3) is defined

according to the associative relation

(ST)v = S(Tv) , (2.45)

for any v ∈ E3. In component form, this implies that

(ST)v = S(Tv) = S[(Tijei ⊗ ej)(vkek)]

= S[Tijvk(ej · ek)ei]
= S(Tijvkδjkei)

= S(Tijvjei)

= SkiTijvjek

= (SkiTijek ⊗ ej)(vlel) , (2.46)

where, again, use is made of (2.22) and (2.24). Equation (2.46) readily leads to

ST = SkiTijek ⊗ ej . (2.47)

This, in turn, shows that the matrix of components of the tensor ST is obtained by the

multiplication of the 3 × 3 matrix of components [Ski] of tensor S by the 3 × 3 matrix of

components [Tij ] of tensor T. Note that, in general, ST 6= TS.

Example 2.4.6: Tensor multiplication
Consider the tensors S = e1 ⊗ e2 and T = e2 ⊗ e1. Recalling (2.47), it follows that

ST = e1 ⊗ e1 ,

while
TS = e2 ⊗ e2 .
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It can be directly shown by invoking (2.30) that, for any tensors T,S ∈ L(E3, E3),

(S+T)T = ST +TT , (ST)T = TTST . (2.48)

The trace tr(u⊗ v) of the tensor product of two vectors u⊗ v is defined as

tr(u⊗ v) = u · v , (2.49)

hence, the trace trT : L(E3, E3) 7→ R of a tensor T is deduced from equation (2.49) as

trT = tr(Tijei ⊗ ej) = Tijei · ej = Tijδij = Tii . (2.50)

This means that the trace of a tensor equals the trace of the matrix of its components. Like-

wise, the determinant detT of the tensor T is defined as the determinant of the matrix [Tij ]

of its components relative to any orthonormal basis.

The linear eigenvalue problem for a tensor T is written as

Tz = Tz , (2.51)

with eigenvalues Ti, i = 1, 2, 3 and (unit) eigenvectors zi, i = 1, 2, 3. The eigenvalues

of a tensor are defined as the eigenvalues of the matrix of its components relative to any

orthonormal basis. Hence, the eigenvalues of a tensor T are obtained from the solution of

the cubic polynomial characteristic equation

det(T− λi) = −λ3 + ITλ
2 − IITλ+ IIIT = 0 , (2.52)

where the principal invariants of T are defined by the scalar triple-product relations

[u,v,w]IT = [Tu,v,w] + [u,Tv,w] + [u,v,Tw] ,

[u,v,w]IIT = [Tu,Tv,w] + [u,Tv,Tw] + [Tu,v,Tw] , (2.53)

[u,v,w]IIIT = [Tu,Tv,Tw] ,

for any vectors u,v,w ∈ E3. Starting from (2.53), it can be readily established (see Exer-

cise 2-19) that the three principal invariants of T satisfy the relations

IT = trT ,

IIT =
1

2

[(
trT

)2 − trT2
]
, (2.54)

IIIT =
1

6

[(
trT

)3 − 3 trT trT2 + 2 trT3
]

= detT ,
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It is easy to show (see Exercise 2-20) that the invariants remain unaltered under a change

of orthonormal basis, which justifies their name. This justifies the earlier definition of the

determinant of T in terms of its components without explicit specification of a basis. It

is also easy to show that symmetric tensors possess only real eigenvalues, while symmetric

positive-definite tensors have only positive eigenvalues.

Let T be symmetric and consider the linear eigenvalue problem (2.51). When the eigen-

values Ti, i = 1, 2, 3 are distinct, one may write

Tzi = T(i)z(i) ,

Tzj = T(j)z(j) ,
(2.55)

where the parentheses around the subscripts signify that the summation convention is not

in use. Upon premultiplying the preceding two equations with zj and zi, respectively, one

gets

zj · (Tzi) = λ(i)zj · z(i)
zi · (Tzj) = λ(j)zi · z(B) .

(2.56)

Recalling the symmetry of T and subtracting the preceding two equations from one another

leads to

(T(i) − T(j))z(i) · z(j) = 0 . (2.57)

Since, by assumption, Ti 6= Tj, it follows that

zi · zj = δij , (2.58)

that is, the eigenvectors are mutually orthogonal and {z1, z2, z3} form an orthonormal basis

in E3. Note that if zi is an eigenvector, then so is −zi, hence there is no loss of generality

in taking {z1, z2, z3} to be a right-hand orthonormal basis.

It turns out that regardless of whether T has distinct or repeated eigenvalues, the clas-

sical spectral representation theorem for symmetric tensors guarantees that there exists an

orthonormal basis {zi} of E3 consisting entirely of eigenvectors of T and that, if {Ti} are

the associated eigenvalues, then

T =
3∑

i=1

T(i)z(i) ⊗ z(i) . (2.59)

This is because the typical component Tij of T on the basis {zi} is given by

Tij = zi ·Tzj = T(j)zi · z(j) , (2.60)
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where use is made of (2.25) and (2.56). Equation (2.59) may be interpreted in linear-

algebraic terms as implying that there exists a basis of E3, here {zi}, with respect to which

the components of T form a diagonal matrix.

Two symmetric tensors S and T are termed co-axial if they have the same eigenvectors.

It can be shown that two symmetric tensors S and T are co-axial if, and only if, ST = TS,

see Exercise 2-17.

The contraction (or inner product) S ·T : L(E3, E3) × L(E3, E3) 7→ R of two tensors S

and T is defined as

S ·T = tr(STT ) . (2.61)

Using components,

tr(STT ) = tr(SkiTjiek ⊗ ej) = SkiTjiek · ej = SkiTjiδkj = SkiTki , (2.62)

therefore

S ·T = SkiTki . (2.63)

Therefore, the contraction of two tensors is computed by summing the product of each

component of the one tensor with the corresponding component of the other. It follows

from (2.61) that S ·T = T · S.
Two tensors S,T ∈ L(E3, E3) are mutually orthogonal if S·T = 0.

Example 2.4.7: Inner product of a symmetric and a skew-symmetric tensor
Assume that S is a symmetric tensor and T is a skew-symmetric tensor. Then, using the definition (2.61), it
follows that

S ·T = SijTij = Sji(−Tji) = −SjiTji = −S ·T ,

This implies that S ·T = 0, hence symmetric and skew-symmetric tensors are always mutually orthogonal.

A tensor T ∈ L(E3, E3) is invertible if, for any w ∈ E3, the equation

Tv = w (2.64)

can be uniquely solved for v. If this is the case, one may write

v = T−1w , (2.65)

and T−1 is the inverse of T. Employing components, Equation (2.64) can be expressed as

Tijvj = wi, which implies that T is invertible if the 3 × 3 matrix [Tij ] of its components is
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itself invertible. As is well-known, the latter condition holds true if, and only if, detT =

det[Tij ] 6= 0. Clearly, if T−1 exists, then taking into account (2.64) and (2.65),

w = Tv = T(T−1w) = (TT−1)w . (2.66)

Hence, since w is arbitrary, TT−1 = i and, similarly, T−1T = i.

Example 2.4.8: The Cayley4-Hamilton5theorem
For any tensor T, the Cayley-Hamilton theorem states that

T3 − ITT
2 + IITT− IIITi = 0 . (2.67)

With reference to (2.52), the above implies that the tensor T satisfies its own characteristic equation.
A proof of this result may be obtained by starting with the identity

det







δim δin δio δip
δjm δjn δjo δjp
δkm δkn δko δkp
δlm δln δlo δlp






TimTjnTko = 0 ,

where i, j, . . . , p = 1, 2, 3. This holds true since at least two rows of the 4× 4 matrix are necessarily identical
(hence, the determinant always vanishes). A systematic, if tedious, expansion of this determinant in conjunction
with (2.54) and the result of Exercise 2-3(h) recovers (2.67).

The Cayley-Hamilton theorem allows any non-negative integer power of a tensor T to be expressed as a
function of i, T, T2 and the three principal invariants of T. If, in addition, the tensor is invertible, then any
integer power may be expressed as a function of any three successive integer powers and the principal invariants
of the tensor.

A tensor T is orthogonal if

TTT = TTT = i . (2.68)

Note that orthogonal tensors are always invertible, since, according to a standard algebraic

property of determinants,

det (TTT) = (detTT )(detT) = (detT)2 = det i = 1 , (2.69)

hence detT = ±1. An orthogonal tensor T is proper or improper if detT = 1 or detT = −1,

respectively.

Equation (2.68) readily implies that the inverse of an orthogonal tensor is equal to its

transpose, that is,

T−1 = TT . (2.70)

4Arthur Cayley (1821–1895) was a British mathematician.
5Sir William Rowan Hamilton (1805–1865) was an Irish physicist and mathematician.
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If the tensors S,T ∈ L(E3, E3) are invertible, then (2.64) and (2.65) imply that

(ST)−1 = T−1S−1 . (2.71)

The notation T−T is often used to denote the inverse-transpose of an invertible tensor T.

This is a well-defined quantity, since the transpose of the inverse of a tensor equals the inverse

of the transpose, that is,

T−T = (T−1)T = (TT )−1 . (2.72)

The preceding equivalence can be established by appeal to (2.30), (2.64), and (2.65).

2.5 Vector and tensor calculus

Define real-, vector- and tensor-valued functions of a vector variable x. Such functions will

be used widely in the ensuing chapters to describe important mathematical quantities of

relevance to continuum mechanics. The real-valued functions of x are of the form

φ : E3 → R , x → φ = φ(x) , (2.73)

while the vector- and tensor-valued functions are of the form

v : E3 → E3 , x → v = v(x) (2.74)

and

T : E3 → L(E3, E3) , x → T = T(x) , (2.75)

respectively.

The gradient of a differentiable real-valued function φ(x) (denoted gradφ(x), ∇φ(x) or
∂φ(x)

∂x
) is a vector-valued function of x defined by the relation

(
gradφ(x)

)
·w =

[
d

dw
φ(x+ ww)

]

w=0

, (2.76)

for any w ∈ E3. Equation (2.76) reveals that gradφ·w quantifies the tendency of φ to change

in the direction w. Using the chain rule, the right-hand side of Equation (2.76) becomes

[
d

dω
φ(x+ ωw)

]

ω=0

=

[
∂φ(x+ ωw)

∂(xi + ωwi)

d(xi + ωwi)

dω

]

ω=0

=
∂φ(x)

∂xi

wi . (2.77)
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Taking into account (2.76) and (2.77), one may write in component form

gradφ =
∂φ

∂xi

ei . (2.78)

As a differential operator, the gradient of a real-valued function takes the form

grad = ∇ =
∂

∂xi

ei . (2.79)

Example 2.5.1: Gradient of a real-valued function
Consider the real-valued function φ(x) = |x|2 = x · x. Its gradient is

gradφ =
∂

∂x
(x · x) =

∂(xjxj)

∂xi
ei =

(
∂xj
∂xi

xj + xj
∂xj
∂xi

)

ei

= (δijxj + xjδij)ei = 2xiei = 2x .

Alternatively, using directly the definition,

(gradφ) ·w =

[
d

dω
{(x+ ωw) · (x+ ωw)}

]

ω=0

=

[
d

dω
{x · x+ 2ωx ·w + ω2w ·w}

]

ω=0

= [2x ·w + 2ωw ·w]ω=0

= 2x ·w ,

which leads, again, to gradφ = 2x.

The gradient of a differentiable vector-valued function6 v(x) (denoted gradv(x), ∇v(x)

or
∂v(x)

∂x
) is a tensor-valued function of x defined by the relation

(
gradv(x)

)
w =

[
d

dω
v(x+ ωw)

]

ω=0

, (2.80)

for any w ∈ E3. Again, Equation (2.80) reveals that (gradv)w represents the change of v

in the direction w. Using chain rule, the right-hand side of equation (2.80) becomes

[
d

dω
v(x+ ωw)

]

ω=0

=

[
∂vi(x+ ωw)

∂(xj + ωwj)

d(xj + ωwj)

dω

]

ω=0

ei =
∂vi(x)

∂xj

wjei . (2.81)

6Technically, real-valued functions have gradients and vector-valued functions have derivatives – however,

the term “gradient” is also used quite frequently in continuum mechanics and elsewhere for vector-valued

functions.
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Hence, appealing to (2.80) and (2.81) one deduces the component representation

gradv =
∂vi
∂xj

ei ⊗ ej . (2.82)

As a differential operator, the gradient of a vector-valued function takes the form

grad = ∇ =
∂

∂xi

⊗ ei . (2.83)

Example 2.5.2: Gradient of a vector-valued function
Consider the vector-valued function v(x) = αx, α ∈ R. Its gradient is

gradv =
∂(αx)

∂x
=

∂(αxi)

∂xj
ei ⊗ ej = αδijei ⊗ ej = αei ⊗ ei = αi ,

since (ei ⊗ ei)v = (v · ei)ei = viei = v. Alternatively, using directly the definition,

(gradv)w =

[
d

dw
(v + ww)

]

w=0

= αw , (2.84)

hence gradv = αi.

The divergence of a differentiable vector-valued function v(x) (denoted div v(x) or ∇ ·
v(x)) is a real-valued function of x defined as

div v(x) = tr
(
gradv(x)

)
, (2.85)

on, using components,

div v = tr

(
∂vi
∂xj

ei ⊗ ej

)

=
∂vi
∂xj

ei · ej =
∂vi
∂xj

δij =
∂vi
∂xi

= vi,i . (2.86)

As a differential operator, the divergence of a vector-valued function is expressed in the form

div = ∇· =
∂

∂xi

· ei . (2.87)

Example 2.5.3: Divergence of a vector-valued function
Consider again the differentiable vector-valued function v(x) = αx, α ∈ R. Its divergence is

div v(x) =
∂(αxi)

∂xi
= α

∂xi
∂xi

= αδii = 3α .
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The divergence of a differentiable tensor-valued function T(x) (denoted divT(x) or ∇ ·
T(x)) is a vector-valued function of x defined by the property that

(
divT(x)

)
· c = div

[(
TT (x)

)
c
]

, (2.88)

for any constant vector c ∈ E3.7

Using components,

(divT) · c = div(TTc)

= div[(Tijej ⊗ ei)(ckek)]

= div[Tijck(ei · ek)ej]
= div[Tijckδikej]

= div[Tijciej]

= tr

(
∂Tij

∂xk

ej ⊗ ek

)

ci

=
∂Tij

∂xk

δjkci

=
∂Tij

∂xj

ci

=

(
∂Tij

∂xj

ei

)

· (ckek) , (2.89)

hence,

divT =
∂Tij

∂xj

ei . (2.90)

The divergence operator on a tensor function is expressed as

div = ∇· =
∂

∂xi

ei . (2.91)

Finally, the curl (or rotor) of a differentiable vector-valued function v(x) (denoted

curlv(x), rotv(x), or∇×v(x)) is another vector-valued function of x defined by the property

(
curlv(x)

)
· c = div

(
v(x)× c

)
, (2.92)

7A slightly different definition of the divergence of a tensor-valued function employed in some references

would neglect the transpose on the right-hand side of (2.88). While either definition would, in principle, be

acceptable, here the one in (2.88) is adopted.
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for any constant vector c ∈ E3. Using, again, components, this translates to

(curlv) · c = div(v × c)

= div(ǫijkvjckei)

= div(ǫijkvjei)ck

= tr

(

ǫijk
∂vj
∂xl

ei ⊗ el

)

ck

= ǫijkvj,lδilck

= ǫijkvj,ick

= ǫijkvk,jci

= (ǫijkvk,jei) · (clel) , (2.93)

which implies that

curlv = ǫijkvk,jei . (2.94)

The notation ∇ × v(x) for the curl of a vector-valued function is justified, when using

components, by observing that

curlv =

(
∂

∂xi

ei

)

× (vjej) =
∂vj
∂xi

ei × ej =
∂vj
∂xi

ǫijkek = ǫijk
∂vk
∂xj

ei , (2.95)

as before. Therefore, as a differential operator, the curl may expressed in the form

curl = ∇× =
∂

∂xi

ei × . (2.96)

Example 2.5.4: Curl of a vector-valued function
Consider the vector-valued function v(x) = x2x3e1 + x3x1e2 + x1x2e3. The curl of this function is

(
∂v3
∂x2

− ∂v2
∂x3

)

e1 +

(
∂v1
∂x3

− ∂v3
∂x1

)

e2 +

(
∂v2
∂x1

− ∂v1
∂x2

)

e3 = 0 .

It is important to recognize here that the definitions (2.76), (2.80), (2.85), (2.88), and (2.92)

are independent of the choice of coordinate system. The respective component representa-

tions (2.78), (2.82), (2.86), (2.90), and (2.94) are specific to the orthonormal basis {e1, e2, e3}
in E3.
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2.6 The divergence and Stokes theorems

It is important for the ensuing developments to review the divergence theorem in its different

forms for real-, vector- and tensor-valued functions. To this end, let P ⊂ E3 be an open

and bounded region with smooth boundary ∂P . Note that the region P is bounded if it can

be fully enclosed by a sphere of finite radius. Also, the boundary ∂P is smooth if it can

be described by a continuously differentiable function of two surface coordinates, which, in

turn, implies that a unit normal n to ∂P is everywhere well-defined.

Next, define a real-valued function φ : P → R, a vector-valued function v : P → E3, and

a tensor-valued function T : P → L(E3, E3). All three functions are assumed continuously

differentiable. Then, the gradients of φ and v satisfy
∫

P
gradφ dv =

∫

∂P
φn da , (2.97)

and ∫

P
gradv dv =

∫

∂P
v ⊗ n da . (2.98)

In addition, the divergences of v and T satisfy
∫

P
div v dv =

∫

∂P
v · n da , (2.99)

and ∫

P
divT dv =

∫

∂P
Tn da . (2.100)

Equation (2.99) expresses the classical divergence theorem, while the other three identities

are derived from this theorem. Indeed, (2.100) is deduced by dotting the left-hand side with

any constant vector c and using (2.88) and (2.99). This leads to

∫

P
divT dv · c =

∫

P
divT · c dv =

∫

P
div(TTc) dv =

∫

∂P
(TTc) · n da

=

∫

∂P
Tn · c da =

∫

∂P
Tn da · c . (2.101)

Since c is arbitrary, Equation (2.100) follows immediately. Next, (2.97) may be deduced

from (2.100) by setting T = φi, so that
∫

P
div(φi) dv =

∫

P
gradφ dv

=

∫

∂P
φn da . (2.102)
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Lastly, (2.98) is obtained from (2.97) by taking, again, c to be any constant vector and

writing, with the aid of (2.22) and (2.80),

[∫

P
gradv dv

]T

c =

∫

P
(gradv)Tc dv =

∫

P
grad(v · c) dv

=

∫

∂P
(v · c)n da =

∫

∂P
(n⊗ v)c da =

[∫

∂P
n⊗ v da

]

c , (2.103)

which, owing to the arbitrariness of c, proves the identity.

Consider next a closed non-intersecting curve C which is parametrized by a scalar τ ,

0 ≤ τ ≤ 1, so that the position vector of a typical point on C is c(τ). Also, let A be an

open surface bounded by C, see Figure 2.6. Clearly, any point on A possesses two equal

and opposite unit vectors, each pointing outward to one of the two sides of the surface. To

eliminate the ambiguity, choose one of the sides of the surface and denote its outward unit

normal by n. This side is chosen so that c(τ̄)×c(τ̄ +dτ) points toward it, for any τ̄ ∈ [0, 1).

If now v is a continuously differentiable vector field, then Stokes8 theorem states that

∫

A
curlv · n dA =

∫

C
v · dx . (2.104)

The integral on the right-hand side of (2.104) is called the circulation of the vector field v

around C. The circulation is the (infinite) sum of the tangential components of v along C.
If v is identified as the spatial velocity field, then, in light of (3.161), the Stokes theorem

states that the circulation of the velocity around C equals twice the integral of the normal

component of the vorticity vector on any open surface that is bounded by C.

C

A

Figure 2.6. A surface A bounded by the curve C.

8Sir George Gabriel Stokes (1819-1903) was a British mathematician.
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2.7 Exercises

2-1. Expand the following equations for an index range of three, namely, i, j = 1, 2, 3:

(a) Aijxj + bi = 0 ,

(b) φ = Cijxixj ,

(c) ψ = TiiSjj .

2-2. Use the summation convention to rewrite the following expressions in concise form:

(a) S11T13 + S12T23 + S13T33 ,

(b) S2
11 + S2

22 + S2
33 + 2S12S21 + 2S23S32 + 2S31S13 .

2-3. Verify the following identities:

(a) δii = 3 ,

(b) δijδij = 3 ,

(c) δijǫijk = 0 ,

(d) ǫijkǫijk = 6 ,

(e) ǫijkǫijm = 2δkm ,

(f) ǫijk = det





δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3



 ,

(g) ǫijkǫilm = δjlδkm − δjmδkl (ǫ-δ identity) ,

(h) ǫijkǫlmn = det





δil δim δin
δjl δjm δjn
δkl δkm δkn



 .

2-4. Verify by direct calculation that

detT = ǫijkT1iT2jT3k ,

where Tij denote the components of tensor T. Using this result, deduce the formula

detT =
1

3!
ǫijkǫlmnTilTjmTkn .

2-5. Given T = 2e1 ⊗ e1 − 3e1 ⊗ e2 + e2 ⊗ e3 +4e3 ⊗ e2, u = e1 +2e3 and v = 3e2, evaluate the
expression φ = Tijuivj .

2-6. (a) Expand and simplify the expression Aijxixj , where i, j = 1, 2, 3 and

(i) Aij is symmetric,
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(ii) Aij is skew-symmetric.

(b) Let Aij be symmetric and Bij be skew-symmetric. Show that AijBij = 0.

2-7. Consider the array [Aij ] and define its symmetric part sym [Aij ] such that

symAij =
1

2
(Aij +Aji) ,

and its skew-symmetric part skw [Aij ] such that

skwAij =
1

2
(Aij −Aji) .

(a) Show that the array Aij can be uniquely expressed as the sum of the symmetric and
the skew-symmetric part, that is,

[Aij ] = sym [Aij ] + skw [Aij ] .

(b) Show that tr [Aij ] = tr(sym [Aij ]).

(c) Given arrays [Aij ] and [Bij ], show that

AijBij = symAij symBij + skwAij skwBij .

2-8. Recall that the cross product of two vectors u = uiei and v = vjej in E
3 is a vector w = u×v

with components

w1 = u2v3 − u3v2 , w2 = u3v1 − u1v3 , w3 = u1v2 − u2v1 ,

with reference to a right-hand orthonormal basis {e1, e2, e3}.

(a) Verify that wi = ǫijkujvk.

(b) Show that, for any three vectors u, v and w, the vector triple product u × (v × w)
satisfies

u× (v ×w) = (u ·w)v − (u · v)w .

Hint: Obtain the component form of the above equation and apply the ǫ-δ identity.

(c) For any vector v and unit vector n, show that

v = v · n+ n× (v × n) .

Provide a geometric interpretation of this identity.

2-9. Show that, for any two vectors a and b in E3,

‖a× b‖2 = ‖a‖2‖b‖2 − (a · b)2 .

This is known as Lagrange’s identity.
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2-10. Verify that the tensor product v ⊗w of the vectors v, w in E3 is a linear mapping, that is,

(v ⊗w)(αu1 + βu2) = α(v ⊗w)u1 + β(v ⊗w)u2 ,

for all u1,u2 ∈ E3 and α, β ∈ R.

2-11. Using the definition of the tensor product of two vectors in E3, establish the following prop-
erties of the tensor product operation:

(a) a⊗ (b+ c) = a⊗ b+ a⊗ c ,

(b) (a+ b)⊗ c = a⊗ c+ b⊗ c ,

(c) (αa)⊗ b = a⊗ (αb) = α(a⊗ b) ,

where a, b and c are arbitrary vectors in E3 and α is an arbitrary real number.

Note: The above properties confirm that the tensor product ⊗ is a bilinear operation on
E3 × E3.

Hint: To prove the identities, operate on each side with an arbitrary vector v.

2-12. Verify the truth of the following formulae:

(a) (a⊗ b)T = b⊗ a ,

(b) T (a⊗ b) = (Ta)⊗ b ,

(c) a⊗ (Tb) = (a⊗ b)TT ,

(d) (a⊗ b)(c⊗ d) = (b · c)a⊗ d ,

where T is an arbitrary tensor in L(E3, E3) and a, b, c and d are arbitrary vectors in E3.

2-13. Show that, for any three vectors a, b, and c in E3,

(a× b)⊗ c+ (b× c)⊗ a+ (c× a)⊗ b = [(a× b) · c]I ,
where I is the identity tensor.

2-14. (a) Let the cross product between a vector v and the tensor product a⊗ b of two vectors
a and b be defined as

v × (a⊗ b) = (v × a)⊗ b .

Use this definition to show that the left cross product v ×T between a vector v and a
tensor T can be expressed in component form as

(v ×T)ij = ǫilkvlTkj .

(b) Let the cross product between the tensor product a ⊗ b of two vectors a and b and
another vector v be defined as

(a⊗ b)× v = a⊗ (b× v) .

Use this definition to show that the right cross product T× v between a tensor T and
a vector v can be expressed in component form as

(T× v)ij = ǫjklTikvl .

ME185



34 Mathematical preliminaries

(c) Use the results in parts (a) and (b) to deduce that

TT × v = −(v ×T)T .

2-15. Let Q be an orthogonal tensor in L(E3, E3) and let u and v be arbitrary vectors in E3. Show
that:

(a) Qu ·Qv = u · v ,

(b) (Qu)× (Qv) = (detQ)Q(u× v) .

What do the above identities imply about the orthogonal transformation of the dot product
and cross product of two vectors of E3?

2-16. Let S and T be two tensors in L(E3, E3).

(a) Assume that the scalar equation
S ·T = 0

holds for every skew-symmetric tensor T. Deduce that S is necessarily symmetric.

(b) Assume that the scalar equation
S ·T = 0

holds for every symmetric tensor S. Deduce that T is necessarily skew-symmetric.

2-17. Show that two symmetric tensors S andT are co-axial if, and only if, their product commutes,
that is, ST = TS.

2-18. Let {ei , i = 1, 2, 3} and {ēi , i = 1, 2, 3} be two right-hand orthonormal bases in E3 and
assume that they are related according to

ēi = Aijej ; Aij = ēi · ej ,

where each entry Aij represents the cosine of the angle between ēi and ej , namely Aij =
cos (ēi, ej).

(a) Show that the matrix [Aij ] is orthogonal.

(b) Let a vector v be represented on the two bases as

v = viei = v̄iēi .

Show that v̄i = Aijvj .

(c) Let a tensor T be represented on the two bases as

T = Tijei ⊗ ej = T̄ij ēi ⊗ ēj .

Show that T̄ij = AikTklAjl.

(d) Consider a change of basis where the angles between ēi and ej are tabulated below:
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ē1 ē2 ē3
e1 120o 120o 45o

e2 45o 135o 90o

e3 60o 60o 45o

.

Calculate the entries Aij and verify that the matrix [Aij ] is orthogonal. Also, if v =
2e1 + 3e2 − e3 and T = −2e1 ⊗ e1 + 5e1 ⊗ e3 + 2e2 ⊗ e3 + e3 ⊗ e3, find the component
representation of v and T on the basis {ēi}.

2-19. Derive the expressions (2.54) for the principal invariants of a tensor T in L(E3, E3) from the
corresponding definitions in (2.53).

2-20. Given an arbitrary tensor T in L(E3, E3), verify that each of its principal invariants attains
the same value regardless of the choice of basis.

2-21. Let a scalar function φ be defined on E3 as

φ = αx1x
2
2x3 + β sin (γx2) ,

where α, β and γ are constant real numbers. Determine the following fields:

(a) v = gradφ ,

(b) divv ,

(c) T = gradv ,

(d) divT ,

(e) curlv .

2-22. Give an example of a non-constant two-dimensional vector field with zero divergence and
zero curl.

2-23. Use indicial notation to verify the following identities:

(a) grad (φv) = φ gradv + v ⊗ gradφ ,

(b) grad (v ·w) = (gradv)Tw + (gradw)Tv ,

(c) grad (divv) = div (gradv)T ,

(d) div (v ⊗w) = (gradv)w + (divw)v ,

(e) curl gradφ = 0 ,

(f) div curlv = 0 ,

(g) curl curlv = grad divv − div gradv ,

(h) curl (φv) = φ curlv + gradφ× v ,

(i) div (v ×w) = w · curlv − v · curlw ,
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(j) curl (v ×w) = div (v ⊗w −w ⊗ v) ,

where φ is a scalar field and v, w are vector fields in E3.

2-24. Let φ and ψ be twice continuously differentiable scalar functions defined on a region P ∪ ∂P
of E3, and assume that ∂P is a smooth surface with outward unit normal n.

(a) Prove Green’s First Identity, according to which

∫

∂P
φ
∂ψ

∂n
da =

∫

P

(
gradφ · gradψ + φ div (gradψ)

)
dv ,

where
∂(·)
∂n

denotes the partial derivative of (·) in the direction of n.

(b) Use the above result to obtain Green’s Second Identity, according to which

∫

∂P

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
da =

∫

P

(
φ div (gradψ) − ψ div (gradφ)

)
dv .

(c) Recall that a twice continuously differentiable scalar function f is termed harmonic if
and only if it satisfies Laplace’s equation, namely if

div(grad f) = ∇2f = 0 .

Use the result of part (a) to show that if f is harmonic in P, then

∫

∂P

∂f

∂n
da = 0 .

(d) Use again the result of part (a) to show that if f is harmonic in P and vanishes identically
on ∂P, then f vanishes everywhere in P.

(e) Consider the following boundary-value problem:

∇2f = 0 in P ,

f = f̄ on ∂P ,

where f̄ is a function that represents the prescribed values of f on ∂P. The above
problem is known as the Dirichlet Problem for Laplace’s equation. Show that if a
solution to the above boundary-value problem exists, then it is unique.
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Chapter 3

Kinematics of Deformation

3.1 Bodies, configurations and motions

Let a continuum body B be defined as a set of material particles, which, when considered

together, endow the body with local (pointwise) physical properties that are independent of

its actual size or the time over which they are measured. Also, let a typical such particle

be denoted P , while an arbitrary subset of B be denoted S , see Figure 3.1. The body is

assumed to exist irrespective of time and, in its primitive form described above, does not

possess any geometric features, such as, e.g., position, size or boundary.

S

B

P

Figure 3.1. A body B and its subset S .

Let x be the point in E3 occupied by a particle P of the body B at time t, and let x be

its associated position vector relative to the fixed origin O of an orthonormal basis in the

vector space E3. Then, define by χ̄ : (P, t) ∈ B × R 7→ E3 the motion of B, which is a

mapping, such that

x = χ̄(P, t) = χ̄t(P ) . (3.1)
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In the above, χ̄t : B 7→ E3 is called the configuration mapping of B at time t. Given χ̄,

the body B may be mapped to its configuration R = χ̄(B, t) with boundary ∂R at time t.

Likewise, any part S ⊂ B can be mapped to its configuration P = χ̄(S , t) with bound-

ary ∂P at time t, see Figure 3.2. Clearly, R and P are point sets in E3. When endowed

with the mathematical structure of E3, the sets R and P are typically thought of as open,

which is tantamount to assuming that they do not contain their respective boundaries ∂R
and ∂P .

S

B

P

P
R

∂P
∂Rx

O

x

χ̄

Figure 3.2. Mapping of a body B to its configuration at time t.

The configuration mapping χ̄t is assumed to be invertible, which means that any point

x ∈ R can be uniquely associated to a particle P according to

P = χ̄
−1
t (x) . (3.2)

The motion χ̄ of the body is also assumed to be twice-differentiable in time. Then, one

may define the velocity and acceleration of any particle P at time t according to

v =
∂χ̄(P, t)

∂t
, a =

∂2
χ̄(P, t)

∂t2
. (3.3)

The mapping χ̄ represents the material description of the body motion. This is because the

domain of χ̄ consists of the totality of material particles in the body, as well as time. This

description, although mathematically proper, is of limited practical use, because there is no

direct quantitative way of tracking particles of the body. For this reason, two alternative

descriptions of the body motion are introduced below.

Of all configurations in time, select one, say R0 = χ̄(B, t0) at a time t = t0, and refer to

it as the reference configuration. The choice of reference configuration is largely arbitrary,1

1More generally, any configuration that the body is capable of occupying (irrespective of whether it

actually does or not) may serve as a reference configuration.
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although in many practical problems it is guided by the need for mathematical simplicity.

Now, denote the point which P occupies at time t0 as X and let this point be associated

with position vector X relative to the fixed origin O, that is,

X = χ̄(P, t0) = χ̄t0(P ) . (3.4)

Thus, one may exploit the invertibility of χ̄t0 to express the position vector x of particle P

at time t as

x = χ̄(P, t) = χ̄(χ̄−1
t0
(X), t) = χ(X, t) . (3.5)

The mapping χ : E3 × R 7→ E3, where

x = χ(X, t) = χt(X) (3.6)

represents the referential or Lagrangian description of the body motion. In such a descrip-

tion, it is implicit that a reference configuration R0 is provided. The mapping χt is the

placement of the body relative to its reference configuration, see Figure 3.3. Note that the

placement χt is an invertible mapping. Indeed, appealing to (3.2) and (3.4),

X = χ̄t0(P ) = χ̄t0

(
χ̄

−1
t (x)

)
= χ

−1
t (x) . (3.7)

B

P

RR0

O

x
X

x

X

χ̄t0

χ̄t

χt

Figure 3.3. Mapping of a body B to its reference configuration at time t0 and its current

configuration at time t.

It is important to emphasize here that it may not be always possible to identify a useful

reference configuration of the body. This is typically the case with fluids that undergo
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very large motions. Here, while one may simply designate a configuration as reference, the

fact that fluid particles travel at high velocity and reach positions far from their reference

placement renders such a designation impractical for analytical or computational purposes.

Assume next that the motion of the body B is described relative to the (fixed) refer-

ence configuration R0 defined at time t = t0 and let the configuration R of B at some

time t be termed the current configuration. Also, let {E1,E2,E3} and {e1, e2, e3} be fixed

right-hand orthonormal bases associated with the reference and current configuration, re-

spectively.2 With reference to the preceding bases, one may write the position vectors X

and x corresponding to the points occupied by the particle P at times t0 and t as

X = XAEA , x = xiei , (3.8)

respectively.3 Hence, resolving all relevant vectors to their respective bases, the motion χ

in (3.6) may be expressed as

xiei = χi(XA, t)ei , (3.9)

or, in pure component form,4

xi = χi(XA, t) . (3.10)

The velocity and acceleration vectors, expressed in the referential description, take the

form

v =
∂χ(X, t)

∂t
, a =

∂2
χ(X, t)

∂t2
, (3.11)

respectively, provided χ is twice-differentiable in time. Resolving all vectors in the orthonor-

mal basis {e1, e2, e3}, as mandated by the coordinate representation of χ in (3.9), leads

to

vi =
∂χi(XA, t)

∂t
, ai =

∂2χi(XA, t)

∂t2
. (3.12)

Scalar, vector and tensor functions can be alternatively expressed using the spatial or

Eulerian description, where the independent variables are the current position vector x and

2It is possible to use the same coordinate system for both configurations. However, such a simplification

would obscure the natural association of physical quantities with a particular configuration, which will be

expounded later in this section.
3To enhance clarity, upper-case Roman letters A,B,C, . . . and lower-case Roman letters i, j, k, . . . will be

used to denote indices associated with the bases {E1,E2,E3} and {e1, e2, e3}, respectively.
4By convention, when a component, such as XA is used as an argument in a function, it is taken to

represent the full triad (X1, X2, X3).
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time t. Indeed, starting, for example, with a scalar function f = f̌(P, t), one may appeal

to (3.2) to write

f = f̌(P, t) = f̌(χ̄−1
t (x), t) = f̃(x, t) . (3.13)

In analogous fashion, one may take advantage of (3.7) to write

f = f̂(X, t) = f̂(χ−1
t (x), t) = f̃(x, t) . (3.14)

The above two equations may be combined to yield

f = f̌(P, t) = f̂(X, t) = f̃(x, t) . (3.15)

Clearly, all three functions f̌ , f̂ and f̃ in (3.15) describe the same quantity f . However, in the

material description, one determines f for a given material point P and time t. Similarly, the

arguments in the referential description are the position X occupied by a material particle P

at some reference time t0 and time t. By contrast, the spatial description uses as arguments

a position x in space and time t, and determines f for the material particle P that happens

to occupy this position at t.

The preceding analysis shows that any function (not necessarily real-valued) that depends

on position and time can be written equivalently in material, referential or spatial form.

Focusing specifically on the referential and spatial descriptions, it is easily seen that the

velocity and acceleration vectors can be equivalently expressed as

v = v̂(X, t) = ṽ(x, t) , a = â(X, t) = ã(x, t) , (3.16)

respectively, see Figure 3.4. In component form, one may write

vi = v̂i(XA, t) = ṽi(xj, t) , ai = âi(XA, t) = ãi(xj, t) . (3.17)

(X, t) (x, t)

v̂ ṽ

v

χ

Figure 3.4. Schematic depiction of referential and spatial mappings for the velocity v.
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Example 3.1.1: A three-dimensional motion and its time derivatives
Consider a motion χ, such that

x1 = χ1(XA, t) = X1e
t

x2 = χ2(XA, t) = X2 + tX3

x3 = χ3(XA, t) = −tX2 + X3 ,

with reference to fixed orthonormal system {ei}. Note that x = X at time t = 0, that is, the body occupies
the reference configuration at time t = 0.

The inverse mapping χ
−1
t is easily obtained as

X1 = χ−1
t1

(xj) = x1e
−t

X2 = χ−1
t2

(xj) =
x2 − tx3
1 + t2

X3 = χ−1
t3

(xj) =
tx2 + x3
1 + t2

.

The velocity field, written in the referential description has components v̂i(XA, t) =
∂χi(XA, t)

∂t
, namely

v̂1(XA, t) = X1e
t

v̂2(XA, t) = X3

v̂3(XA, t) = −X2 ,

while in the spatial description has components ṽi(χj , t) given by

ṽ1(χj , t) = (x1e
−t)et = x1

ṽ2(χj , t) =
tx2 + x3
1 + t2

ṽ3(χj , t) = − x2 − tx3
1 + t2

.

The acceleration in the referential description has components âi(XA, t) =
∂2χi(XA, t)

∂t2
, hence,

â1(XA, t) = X1e
t

â2(XA, t) = 0

â3(XA, t) = 0 ,

while in the spatial description the components ãi(χj , t) are given by

ã1(xj , t) = x1

ã2(xj , t) = 0

ã3(xj , t) = 0 .

Given real-valued functions f̌(P, t) = f̂(X, t) = f which are differentiable in time, define
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the material time derivative ḟ of f as5

ḟ =
∂f̌(P, t)

∂t
=

∂f̂(X, t)

∂t
. (3.18)

It is clear from the above definition that the material time derivative of a function is the

rate of change of the function when keeping the material particle P (or, equivalently, its

referential position X) fixed.

If, alternatively, f is expressed in spatial form, that is, f = f̃(x, t) and f̃ is differentiable,

then one may resort to the chain rule to express the material time derivative as

ḟ =
∂f̃(x, t)

∂t
+

∂f̃(x, t)

∂x
· ∂χ(X, t)

∂t

=
∂f̃(x, t)

∂t
+

∂f̃(x, t)

∂x
· v

=
∂f̃(x, t)

∂t
+ grad f̃ · v , (3.19)

where use is also made of (3.11)1. The first term on the right-hand side of (3.19) is the

spatial time derivative of f and corresponds to the rate of change of f for a fixed point x

in space. The second term is called the convective rate of change of f and is due to the

spatial variation of f and its effect on the material time derivative as the material particle

which occupies the point x at time t is transported (or, convected) from x with velocity v.

Analogous expressions for the material time derivative apply to vector- and tensor-valued

functions.

Example 3.1.2: Material time derivative of the velocity
Consider the velocity v = ṽ(x, t) of a body and write its material time derivative (which equals, by virtue of
(3.11), to the acceleration a) as

v̇ =
∂ṽ(x, t)

∂t
+
∂ṽ(x, t)

∂x

∂χ(X, t)

∂t

=
∂ṽ(x, t)

∂t
+
∂ṽ(x, t)

∂x
v

=
∂ṽ(x, t)

∂t
+ (grad ṽ)v . (3.20)

A volume, surface, or curve which consists of the same material points in a moving body

at all times is termed material. Any material surface in E3 may be expressed in the form

5Other notations frequently used for the material time derivative include d
dt

(used also here on occasion)

and D
Dt

. Alternative terminology to “material time derivative” includes total time derivative, particle time

derivative, and substantial time derivative.
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F (X1, X2, X3) = 0. This is because, by its mathematical definition, it contains the same

material particles at all times, given that its representation in terms of the referential co-

ordinates is independent of time. On the other hand, a surface described by the equation

F (X1, X2, X3, t) = 0 is generally not material, because the locus of its points contains dif-

ferent material particles at different times. This distinction becomes less apparent when a

surface is defined in spatial form, that is, by an equation f(x1, x2, x3, t) = 0. In this case,

one may employ Lagrange’s6 criterion of materiality, which states that a surface described

by the equation of the form f(x1, x2, x3, t) = 0 is material if, and only if, ḟ = 0.

To prove Lagrange’s criterion, assume first that a surface is material. It follows that its

mathematical representation is of the form

f(x1, x2, x3, t) = F (X1, X2, X3) = 0 , (3.21)

hence

ḟ(x1, x2, x3, t) = Ḟ (X1, X2, X3) = 0 . (3.22)

Conversely, if the criterion holds, then

ḟ(x1, x2, x3, t) = Ḟ (X1, X2, X3, t) =
∂F

∂t
(X1, X2, X3, t) = 0 , (3.23)

which implies that F = F (X1, X2, X3), hence the surface is indeed material.

A similar analysis applies for assessing the materiality of curves in E3. Specifically, a curve

is material if it can be defined as the intersection of two material surfaces, say F (X1, X2, X3) = 0

and G(X1, X2, X3) = 0. Switching to the spatial description and expressing these surfaces

as

F (X1, X2, X3) = f(x1, x2, x3, t) = 0 (3.24)

and

G(X1, X2, X3) = g(x1, x2, x3, t) = 0 , (3.25)

it follows from Lagrange’s criterion that a curve is material if ḟ = ġ = 0. It is easy

to argue that this is a sufficient, but not a necessary condition for the materiality of a

curve. This is because it is possible for two non-material surfaces to be material along their

intersection.

6Joseph-Louis Lagrange (1736–1813) was a French-Italian mathematician.
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Example 3.1.3: A material surface
Consider a surface defined by the equation

f(x1, x2, x3, t) = 2x1x3 − x22 ,

in a body whose velocity is v = x2e1 + x3e2. This is a material surface according to Lagrange’s criterion since

ḟ =
∂f

∂t
+
∂f

∂xi
vi = 2x3x2 − 2x2x3 = 0 .

Some important definitions concerning special motions are introduced next. A rigid-body

motion (or, simply, rigid motion) is one in which the distance between any two material

points remains constant at all times. Denoting X and Y the position vectors of two material

points on the fixed reference configuration and recalling the definition of the distance function

in (2.14), a motion is rigid if, and only if, for any material points with referential positions X

and Y,

d(X,Y) = d(χ(X, t),χ(Y, t)) = d(x,y) , (3.26)

at all t. A motion χ is steady at a point x, if the velocity at that point is independent of

time. If this is the case for all points in space, then v = ṽ(x) and the motion is called steady.

If a motion is not steady, then it is called unsteady. A point x in space where ṽ(x, t) = 0 at

all times is called a stagnation point.

Example 3.1.4: Steady motion
The motion defined in Example 3.1.1 is steady on the x1-axis and has a stagnation point at x = 0.

Next, consider the motion χ of body B, and fix a particle P , which occupies a point

with position vector X in the reference configuration. Subsequently, trace its successive

placements as a function of time by fixing X and consider the one-parameter family of

placements

x = χ(X, t) , (X fixed) . (3.27)

The resulting parametric equations (with parameter t) represent in algebraic form the path-

line or particle path of the given particle, see Figure 3.5. Alternatively, one may express the

same particle path in differential form as

dx = v̂(X, t)dt , x(t0) = X , (X fixed) , (3.28)

or, equivalently,

dy = ṽ(y, τ)dτ , y(t) = x , (3.29)
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where τ is a scalar parameter. Equation (3.28) implies that the velocity of the particle is

always tangent to its pathline, as shown in Figure 3.5. Physically, the pathline represents

the trajectory of the given particle as the body undergoes its motion.

X

x v

R0

R
Figure 3.5. Pathline of a particle which occupies X in the reference configuration.

Next, let v = ṽ(x, t) be the velocity field at a fixed time t. Define the streamline through

a point x as the space curve that passes through x and is tangent to the velocity field at all

of its points at the given time. Therefore, the streamline is defined in differential form as

dy = ṽ(y, t)dτ , y(τ0) = x , (t fixed) , (3.30)

where τ is a scalar parameter and τ0 some arbitrarily chosen value of τ corresponding to

the point x, see Figure 3.6. Physically, a streamline is obtained by taking a snapshot of the

velocity field and letting an imaginary particle move through it so that the instantaneous

velocity is always tangent to its path.

x
y

ṽ(y, t)
dy

Figure 3.6. Streamline through point x at time t.

The streakline through a point x at time t is the locus of placements at time t of all

particles that have passed or will pass through x. As such, it is defined by the equation

y = χ(χ−1
τ (x), t) , (x, t fixed) , (3.31)

where τ is a scalar parameter. Indeed, it suffices to observe that χ
−1
τ (x) in (3.31) is the

referential placement of a material point that occupies x at some time τ . In differential
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form, the streakline through a point x at time t can be expressed as

dy = ṽ(y, s)ds , y(τ) = x , s = t , (x, t fixed) , (3.32)

where s is a scalar parameter. Equation (3.32) can be derived from (3.31) by merely noting

that ṽ(y, t) is the velocity at time t of a particle which at time τ occupies the point x, while

at time t it occupies the point y. Physically, the streakline may be thought of as the colored

line (streak) of particles generated when placing a dye at a fixed point in a flowing liquid.

Note that given a point x and a time t, the pathline of the particle occupying x at t

and the streamline through x at t have a common tangent. Indeed, this is equivalent to

stating that the velocity at time t of the material point occupying X at time t0 has the same

direction with the velocity of the material point that occupies x = χ(X, t) at time t.

In the case of steady motion, the pathline for any particle occupying a point x at time t

coincides with the streamline and streakline through x at time t. To argue this property,

consider a streamline (which is now a fixed curve in time, since the motion is steady) and

take a material point P situated at point x which happens to lie on this streamline at time t.

Since the velocity of P is tangent to the streamline that passes through x and since the

streamline does not change with time, the particle P will always stay on the streamline,

hence its pathline will coincide with the streamline through x. A similar argument can be

made for streaklines.

In general, pathlines can intersect (or self-intersect), since intersection points merely

signify that different particles (or the same particle) can occupy the same position at dif-

ferent times. However, streamlines do not intersect, except at points where the velocity

vanishes, otherwise the velocity at an intersection point would have two different directions.

Likewise, a streakline through x may self-intersect for points which occupy x at multiple

times.

Example 3.1.5: Pathlines, streamlines, and streaklines
Consider a planar velocity field v = sin t e1 + e2. In view of (3.29), the pathline at t = 0 that passes through
x = e1 + e2 is determined by solving the system of differential equations

dy1 = sinτ dτ , dy2 = dτ ,

which, under the given initial condition, leads to the parametric equations

y1(t) = 2− cos t , y2(t) = 1 + t .

The streamline at t = 0 that passes through x = e1 + e2 satisfies (3.30), which translates to

dy1 = 0 , dy2 = dτ .
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This, in turn, can be readily integrated to

y1(τ) = 1 , y2(τ) = 1 + τ .

Lastly, the streakline through x = e1 + e2 at t = 0 satisfies (3.32). Upon integration, this leads to the
system

y1(s) = − cos s+ c1 , y2(s) = s+ c2 .

Imposing the boundary conditions y1(τ) = 1 and y2(τ) = 1 and letting s = 0 results in

y1(τ) = cos τ , y2(τ) = 1− τ .

The lines are shown in the figure below (note that, as expected, they are tangent to each other at x = e1+e2).
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3.2 The deformation gradient and other measures of

deformation

Consider a body B which occupies its reference configuration R0 at time t0 and the current

configuration R at time t. Also, let {EA} and {ei} be two fixed right-hand orthonormal

bases associated with the reference and current configuration, respectively.

Let the motion χ(X, t), defined in (3.6)1, be differentiable in X, and consider the de-

formation of an infinitesimal material line element represented by dX and located at the

point X of the reference configuration. This material line element is mapped at time t into

another one, represented by dx at point x in the current configuration, see Figure 3.7. Keep-

ing time fixed, taking differentials of both sides of (3.6)1, and applying the chain rule, it

follows that
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x

dx

X

dX

RR0

Figure 3.7. Mapping of an infinitesimal material line element represented by dX to the current

configuration.

dx =
∂χ

∂X
(X, t)dX = FdX , (3.33)

where F is the deformation gradient tensor relative to the reference configuration R0, defined

as

F =
∂χ(X, t)

∂X
. (3.34)

According to (3.33), the deformation gradient F provides the rule by which infinitesimal line

elements are mapped from the reference to the current configuration.

When vectors, such as X and x, are resolved on orthonormal bases in E3, the terms dX

and dx may be thought of themselves as vectors of infinitesimal magnitude resolved on the

corresponding orthonormal bases. Therefore, starting from (3.8), it follows that

dX = dXAEA , dx = dxiei . (3.35)

Hence, the deformation gradient tensor is by necessity of the form

F =
∂χi(XB, t)

∂XA

ei ⊗ EA = FiAei ⊗ EA , (3.36)

so that (3.33) becomes

dxiei = (FiAei ⊗ EA)dXBEB = FiAdXAei (3.37)

or, in pure component form,

dxi = χi,AdXA = FiAdXA . (3.38)

A deformation is termed spatially homogeneous , if the deformation gradient F is inde-

pendent of X, or equivalently, if the motion χ is linear in X.
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Example 3.2.1: Elementary spatially homogeneous deformations
Here, the coordinate systems {EA} and {ei} are taken to coincide.

(a) Let χ(XA, t) = αX1e1 +X2e2 +X3e3, where α > 1. In this case,

[FiA] =





α 0 0
0 1 0
0 1 1



 .

This corresponds to pure stretch in the E1-direction.

(b) Let χ(XA, t) = (X1 + βX2)e1 +X2e2 +X3e3, where β > 0. In this case,

[FiA] =





1 β 0
0 1 0
0 0 1



 .

This corresponds to simple shear in the (E1,E2)-plane (see also Exercise 3-8).

(c) Let χ(XA, t) = (X1 + γX2)e1 + (γX1 +X2)e2 +X3e3, where γ > 0. In this case,

[FiA] =





1 γ 0
γ 1 0
0 0 1



 .

This corresponds to pure shear in the (E1,E2)-plane.

(d) Let χ(XA, t) = δX1e1 + δX2e2 + δX3e3, where δ > 0. In this case,

[FiA] =





δ 0 0
0 δ 0
0 0 δ



 .

This is case of pure dilatation, that is, deformation that involves only change of volume.

The preceding are examples of spatially homogeneous deformation. The figure shows projections of typical
deformed configurations of a unit cube on the (E1,E2)-plane.
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At this stage, it is important to recognize that the tensor F maps any vector at a

point X ∈ R0 to some vector at the point x ∈ R. Therefore, the domain of F is the

set TXR0 of all vectors emanating from X ∈ R0, while its range is the set TxR of all vectors

emanating from x ∈ R, see Figure 3.8. While is it obvious that each of TXR0 and TxR
spans the entire E3, they are distinguished from one another by the different points of ori-
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gin (X vs. x) in their vectors. Therefore, F is formally taken to belong to L(TXR0, TxR),

which is the set of all tensors mapping vectors in TXR0 to vectors in TxR. It is clear from

(3.36) and the preceding discussion that the deformation gradient is a two-point tensor with

basis {ei ⊗EA}. The differentiation between vectors in TXR0 and TxR is underlined by the

selection of different bases {EA} and {ei} to represent them.

xX

RR0

Figure 3.8. Vectors at point X in the reference configuration and at point x in the current

configuration.

Recall now that the placement mapping χt is assumed invertible for any given t. Also,

recall the inverse function theorem of real analysis, which, in the case of the mapping χt can

be stated as follows: For a fixed time t, let χt : R0 → R be continuously differentiable (that

is,
∂χt

∂X
exists and is continuous) and consider an X ∈ R0, such that J = det

∂χt

∂X
(X) 6= 0.

Then, there is an open neighborhood P0 of X in R0 and an open neighborhood P of R, such

that χt(P0) = P and χt has a continuously differentiable inverse χ−1
t , so that χ−1

t (P) = P0,

as in Figure 3.9. Moreover, for any x ∈ P , X = χ
−1
t (x) and

∂χ−1
t (x)

∂x
= (F(X, t))−1. The

last equation means that the derivative of the inverse motion with respect to x is identical

to the inverse of the derivative of the motion with respect to X.

xX
RR0

PP0

O

χt

χ
−1
t

Figure 3.9. Application of the inverse function theorem to the motion χ at a fixed time t.

ME185



52 Kinematics of deformation

As stipulated by the inverse function theorem, the continuously differentiable mapping χt

is invertible at a point X for a given time t, if the Jacobian determinant (or, simply, the

Jacobian) J = detF satisfies the condition J 6= 0 at X for the given time t. In this case, by

virtue of the inverse function theorem, the inverse deformation gradient F−1 satisfies

dX =
∂χ−1

t (x)

∂x
dx = F−1dx . (3.39)

Using components, the inverse F−1 ∈ L(TxR, TXR0) of F may be expressed as

F−1 =
∂χ−1

t A

∂xi

EA ⊗ ei = F−1
Ai EA ⊗ ei , (3.40)

where [F−1
Ai ] = [FiA]

−1. The placement mapping χt is invertible at time t, if it is invertible

at every point X, which is guaranteed by the condition det J 6= 0 for all X ∈ R0.

Note that, based on (3.36) and (3.40),

F−1F = EA ⊗ EA = I , FF−1 = ei ⊗ ei = i , (3.41)

where a distinction needs to be made between the referential identity tensor I and the spatial

identity tensor i. For the class of two-point tensors such as F, there is a corresponding

two-point identity tensor which is defined as ı = δiAei ⊗ EA.
7 Likewise, note that the

definition (2.30) of the transpose of a tensor applies also to two-point tensors.8 By this

token, the transpose FT ∈ L(TxR, TXR0) of F has the component representation

FT = FiAEA ⊗ ei . (3.42)

Generally, the infinitesimal material line element represented by dX stretches and rotates

to dx under the action of F. To explore the effect of stretching, write

dX = MdS (3.43)

and

dx = mds (3.44)

7This implies that the component representation of the condition dx = dX (or, strictly, dx = ıX) is

dxi = δiAdXA, where δiA plays the role of a shifter between the coordinate systems associated with the two

configurations.
8For two-point tensor, such as F, the definition (2.30) takes the form dx1 ·FdX2 = FT dx1 · dX2, for any

dx1 and dX2.
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where M and m are unit vectors (that is, M · M = m · m = 1) in the direction of dX

and dx, respectively, while dS > 0 and ds > 0 are the infinitesimal lengths of dX and dx,

respectively, as in Figure 3.10. Next, define the stretch λ of the infinitesimal material line

element represented by dX at time t as

λ =
ds

dS
, (3.45)

and note that, using (3.33), (3.43) and (3.44),

dx = FdX = FMdS

= mds , (3.46)

hence, upon also invoking (3.45),

λm = FM . (3.47)

Since detF 6= 0, it follows from (3.47) that λ 6= 0 and, in particular, that λ > 0, given

that m and M are chosen to render dS and ds positive.

x

dx

X

dX

RR0

M
m

dS ds

Figure 3.10. Infinitesimal material line elements along vectors M and m in the reference and

current configuration, respectively.

To determine the value of λ, take the dot-product of each side of (3.47) with itself and

exploit the unity of m and the defining property (2.30) of tensor transposes, which lead to

λm · λm = λ2(m ·m) = λ2

= (FM) · (FM)

= M · FT (FM)

= M · (FTF)M

= M ·CM , (3.48)
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therefore,

λ2 = M ·CM . (3.49)

Here, C ∈ L(TXR0, TXR0) is the right Cauchy-Green9 deformation tensor, defined as

C = FTF , (3.50)

which, upon recalling (3.36) and (3.42), leads to the pure component representation

CAB = FiAFiB . (3.51)

Is important to observe from (3.49) and (3.50) that C is symmetric and positive-definite, and

is defined with respect to the basis in the reference configuration. To appreciate the physical

significance of C, it can be said that, given a direction M in the reference configuration,

knowledge of C suffices for the determination of the stretch λ of an infinitesimal material line

element directed along M when mapped to the current configuration.

Example 3.2.2: Stretching and rotation of a line element
Consider the two-dimensional deformation associated with the mapping χ defined in component form as

x1 = χ1(XA, t) = aX1

x2 = χ2(XA, t) = bX2 ,

x3 = χ3(XA, t) = X3

where a and b are positive constants.
The components of the deformation gradient are

[FiA] =





a 0 0
0 b 0
0 0 1



 ,

while those of the right Cauchy-Green deformation tensor are

[CAB ] =





a2 0 0
0 b2 0
0 0 1



 .

This is clearly a spatially homogeneous deformation.
The principal stretches and associated principal directions are trivially found to be λ1 = a, λ2 = b, λ3 = 1

and M1 = E1, M2 = E2, and M3 = E3.
The stretch along, say, M = 1√

2
(E1 +E2) is found using (3.48), that is

λ2 = M ·CM =
1

2
(a2 + b2) ,

9George Green (1793–1841) was a British physicist.
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therefore

λ =

√

1

2
(a2 + b2) .

An interesting question to pose (and one that can be answered by a simple experiment using a stretchable
sheet) is whether a material line element along M rotates under the mapping χ. Recalling (3.47), it follows
that √

1

2
(a2 + b2) m = FM ,

or, in components,
√

1

2
(a2 + b2)





m1

m2

m3



 =





a 0 0
0 b 0
0 0 1




1√
2





1
1
0



 ,

which leads to 



m1

m2

m3



 =
1√

a2 + b2





a
b
0



 .

Comparing the component forms of m and M, it is readily concluded that m rotates relative to M unless
a = b.

Alternatively, one may use (3.39), (3.43), and (3.44) to write, in analogy with the pre-

ceding derivation of C,

dX = F−1dx = F−1mds

= MdS , (3.52)

hence, upon invoking once more (3.45),

1

λ
M = F−1m . (3.53)

Again, taking the dot-products of each side of (3.53) with itself, recalling the unity of M,

and the definition (2.30) of the transpose of a tensor, it follows that

1

λ
M · 1

λ
M =

1

λ2
(M ·M) =

1

λ2
(3.54)

= (F−1m) · (F−1m)

= m · F−T (F−1m)

= m · (F−TF−1)m

= m ·B−1m (3.55)

or
1

λ2
= m ·B−1m . (3.56)
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Here, B ∈ L(TxR, TxR) is the left Cauchy-Green tensor, defined as

B = FFT , (3.57)

which translates, in component form, to

Bij = FiAFjA , (3.58)

where use is made of (3.36) and (3.42). In contrast to C, the tensor B is defined with

respect to the basis in the current configuration, as seen from (3.58). Like C, it is easy

to establish from (3.56) and (3.57) that the tensor B is symmetric and positive-definite.

To articulate the physical importance of B, it can be said that, given a direction m in the

current configuration, B allows the determination of the stretch λ of an infinitesimal element

along m which is mapped from the reference configuration.

Example 3.2.3: Sphere under homogeneous deformation
Consider the part of a deformable body which occupies a spherical region P0 of radius σ centered at the fixed
origin O of E3. The equation of the surface ∂P0 of the sphere can be written as

Y ·Y = σ2 , (3.59)

where the position vector X̄ of a point on ∂P0 can be expressed as

Y = σM , (3.60)

where σ > 0 and M ·M = 1.
Assume next that the body undergoes a spatially homogeneous deformation with deformation gradient F(t),

so that (3.33) may be integrated in space to yield

y = FY , (3.61)

given the fixed origin. Setting X = X̄, this leads to

y = FY , (3.62)

where y(t) is the image of Y in the current configuration.

O O
M

m

PP0

Y y

Recalling (3.47), let λ(t) be the stretch of a material line element that lies along M in the reference
configuration, and m(t) the unit vector in the direction of this material line element at time t, as in the above
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figure. Then, Equations (3.47), (3.60) and (3.62) imply that

y = σλm . (3.63)

In addition, given (3.54) and (3.63), the left Cauchy-Green deformation tensor B(t) satisfies

y ·B−1y = σ2 . (3.64)

Recalling next the representation of the left Cauchy-Green deformation tensor in (3.107) and noting that
{mi} form an orthonormal basis in E3, the position vector y can be uniquely resolved in this basis as

y = yimi . (3.65)

Starting from Equation (3.107), one may write

B−1 =
3∑

i=1

λ−2
(i)m(i) ⊗m(i) , (3.66)

and using (3.65) and (3.66), deduce that

y ·B−1y = λ−2
i x̄2i . (3.67)

m1

m2

m3

It is readily seen then from (3.64) and (3.67) that

y21
λ21

+
y22
λ22

+
y23
λ23

= σ2 .

This demonstrates that, under a spatially homogeneous deformation, the spherical region P0 is deformed into
an ellipsoid with principal semi-axes of length σλi along the principal directions of B, as shown in the above
figure.

Consider next the difference ds2 − dS2 in the square of the lengths of the material line

element represented by dX and dx in the reference and current configuration, respectively,
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as shown in Figure 3.10. With the aid of (3.33) and (3.50) this difference may be written as

ds2 − dS2 = dx · dx− dX · dX
= (FdX) · (FdX)− dX · dX
= dX · FT (FdX)− dX · dX
= dX · (CdX)− dX · dX
= dX · (C− I)dX

= dX · 2EdX , (3.68)

where E ∈ L(TXR0, TXR0), defined as

E =
1

2
(C− I) =

1

2
(FTF− I) (3.69)

is the (relative) Lagrangian strain tensor . Using components, the preceding equation can be

written as

EAB =
1

2
(CAB − δAB) =

1

2
(FiAFiB − δAB) , (3.70)

which shows that the Lagrangian strain tensor E is defined with respect to the basis in

the reference configuration. In addition, E is clearly symmetric and vanishes when the body

undergoes no deformation between the reference and the current configuration, that is, when

C = I. The inclusion of the factor “2” in (3.68), which, in turn, results in the factor “1
2
”

in (3.69), can be motivated from Exercise 3-10.

The difference ds2 − dS2 may be also written with the aid of (3.39) and (3.57) as

ds2 − dS2 = dx · dx− dX · dX
= dx · dx− (F−1dx) · (F−1dx)

= dx · dx− dx · F−T (F−1dx)

= dx · dx− (dx ·B−1dx)

= dx · (i−B−1)dx

= dx · 2edx , (3.71)

where e ∈ L(TxR, TxR), defined as

e =
1

2
(i−B−1) =

1

2
(i− F−TF−1) (3.72)
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is the (relative) Eulerian strain tensor or Almansi10 strain tensor . Using components, one

may rewrite the preceding equations as

eij =
1

2
(δij −B−1

ij ) =
1

2
(δij − F−1

Ai F
−1
Aj ) . (3.73)

Like E, the tensor e is symmetric and vanishes when the current configuration remains un-

deformed relative to the reference configuration (that is, when B = i). However, unlike E,

the tensor e is naturally resolved into components on the basis in the current configura-

tion.

Example 3.2.4: Lagrangian and Eulerian strain
Consider again the deformation in Example 3.2.2. Using (3.70), the components of the Lagrangian strain tensor
are given as

[EAB ] =
1

2





a2 − 1 0 0
0 b2 − 1 0
0 0 0



 .

Likewise, the components of the Eulerian strain tensor are written, with the aid of (3.73), as

[eij ] =
1

2





1− a−2 0 0
0 1− b−2 0
0 0 0



 .

Consider now the transformation of an infinitesimal material volume element dV of the

reference configuration to its image dv in the current configuration under the motion χ. The

referential volume element is represented by an infinitesimal parallelepiped with sides dX1,

dX2, and dX3, anchored at point X. Likewise, its spatial counterpart is the infinitesimal

parallelepiped at x with sides dx1, dx2, and dx3, where each dxi is the image of dXi under χ,

see Figure 3.11.

To relate the two infinitesimal volume elements, first note that

dV = dX1 · (dX2 × dX3) = dX2 · (dX3 × dX1) = dX3 · (dX1 × dX2) , (3.74)

where each of the representations of dV in (3.74) corresponds to the scalar triple product

[dX1, dX2, dX3] of the vectors dX1, dX2 and dX3. Taking into account the definition of the

10Emilio Almansi (1869–1948) was an Italian physicist and mathematician.

ME185



60 Kinematics of deformation

xX

R0 R

dX1

dX2dX3

dx1

dx2

dx3

Figure 3.11. Mapping of an infinitesimal material volume element dV to its image dv in the

current configuration.

determinant in (2.53)3, this leads to

dv = dx1 · (dx2 × dx3)

= (FdX1) ·
[
(FdX2)× (FdX3)

]

= [FdX1,FdX2,FdX3]

= detF[dX1, dX2, dX3]

= JdV , (3.75)

or, simply,

dv = JdV . (3.76)

Here, one may argue that if, by convention, dV > 0 (which is true as long as the triad

{dX1, dX2, dX3} observes the right-hand rule), then the relative orientation of the line ele-

ments {dx1, dx2, dx3} is preserved during the motion if J > 0 everywhere and at all times.

Indeed, since the motion is assumed smooth in time and invertible, any changes in the sign

of J would necessarily imply that there exists a time t at which J = 0 at some material

point(s), which would violate the assumption of invertibility of the motion at any given

time. Based on the preceding observation, the Jacobian J will be considered henceforth to

be positive at all times.

Motions for which dv = dV (that is, J = 1) for all infinitesimal material volume ele-

ments dV at all times are called isochoric (or volume-preserving).

Consider next the transformation of an infinitesimal material surface element of area dA

in the reference configuration to its image of area da in the current configuration. The

referential surface element is represented by the parallelogram formed by the infinitesimal
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material line elements dX1 and dX2, such that

dA = dX1 × dX2 = NdA , (3.77)

where dA is the infinitesimal area vector and N is the unit normal to the surface element

consistently with the right-hand rule, see Figure 3.12. Similarly, in the current configuration,

one may write

da = dx1 × dx2 = nda , (3.78)

where n is the corresponding unit normal to the surface element defined by the images dx1

and dx2 of X1 and X2 under χ. Next, let dX be any infinitesimal material line element, such

xX

R0 R

dX1

dX2

dx1

dx2

N n

Figure 3.12. Mapping of an infinitesimal material surface element dA to its image da in the

current configuration.

that N ·dX > 0 and consider the infinitesimal volumes dV and dv formed by {dX1, dX2, dX}
and {dx1, dx2, dx}, respectively. It follows from (3.33), (3.74) and (3.75) that

dv = dx · (dx1 × dx2) = dx · nda = (FdX) · nda
= JdV

= JdX · (dX1 × dX2) = JdX ·NdA , (3.79)

which implies that

(FdX) · nda = JdX ·NdA , (3.80)

hence also

dX · (FTnda− JNdA) = 0 . (3.81)

In view of the arbitrariness of dX, this leads to

nda = JF−TNdA , (3.82)
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which is known as Nanson’s 11 formula. Taking the dot-product of each side in (3.82) with

itself and recalling (3.50) yields

da2 = J2F−TN · F−TN dA2 = J2N ·C−1N dA2 , (3.83)

therefore, since J is positive and C−1 positive-definite,

|da| = J
√
N ·C−1N |dA| . (3.84)

Employing an earlier argument made for infinitesimal volume transformations, if an infinites-

imal material line element satisfies dA > 0, then it should be also true that da > 0 at all

times. This implies that Equation (3.84) becomes simply

da = J
√
N ·C−1N dA . (3.85)

While, in general, the infinitesimal material line element represented by dX is both

stretched and rotated due to F, neither C (or B) nor E (or e) yield complete information

regarding the change in orientation of dX. To extract such rotation-related information

from F, recall the polar decomposition theorem, which states that any invertible tensor F

can be uniquely decomposed into

F = RU = VR , (3.86)

where R is an orthogonal tensor and U,V are symmetric positive-definite tensors. In com-

ponent form, the polar decomposition is expressed as12

FiA = RiBUBA = VijRjA . (3.87)

The pairs of tensors (R,U) or (R,V) are the polar factors of F. The tensors U and V are

called the right stretch tensor and the left stretch tensor, respectively. It follows from (3.87)

that the component representations of these tensors are

U = UABEA ⊗ EB , V = Vijei ⊗ ej , (3.88)

that is, U ∈ L(TXR0, TXR0) and V ∈ L(TxR, TxR), so that they are naturally resolved on

the bases of the reference and current configuration, respectively. Also, R ∈ L(TxR, TXR0),

like F, is a two-point tensor, with coordinate representation

R = RiAei ⊗ EA . (3.89)

11Edward J. Nanson (1850–1936) was an English-born Australian mathematician.
12Alternative component representations, such as FiA = RijUjB are excluded due to the symmetry of U.

Indeed, if U = UiAei ⊗EA, then, by virtue of the definition in (2.30), UT = UiAEA ⊗ ei and U 6= UT .
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Taking the determinants of (3.86), the condition J > 0 and the positive-definiteness of

U, V implies that detR = 1, therefore the polar factor R is not just orthogonal, but

proper orthogonal. A proof of the polar decomposition theorem is left to the reader (see

Exercise 3-19).

It follows from (3.50), (3.86)1, and the orthogonality of R that

C = FTF = (RU)T (RU) = UTRTRU = UU = U2 . (3.90)

Likewise, taking into account (3.57), (3.86)2, and, once again, the orthogonality of R that

B = FFT = (VR)(VR)T = VRRTV = VV = V2 . (3.91)

Given their respective relations to C and B, it is clear that U and V may be used to

determine the stretch of the infinitesimal material line element represented by dX, which

justifies their name.

Next, a geometric interpretation is obtained for the polar decomposition decomposition,

starting with the right polar decomposition (3.86)1. To this end, taking into account (3.33),

write

dx = FdX = (RU)dX = R(UdX) . (3.92)

This suggests that the deformation of dX may be interpreted as taking place in two stages.

In the first one, the vector dX is mapped into dX′ = UdX of length dS ′, while in the second

one, dX′, is mapped into RdX′ = dx. Using (3.43), (3.49), (3.90), and the symmetry of U,

one finds that

dS ′ 2 = dX′ · dX′

= (UdX) · (UdX)

= dX ·UT (UdX)

= dX ·CdX

= (MdS) · (CMdS)

= dS2M ·CM

= λ2dS2 , (3.93)

which, upon recalling (3.45) implies that dX′, obtained under the action of U on dX, has

the same differential length as dx. Subsequently, recalling (3.92) and the definition of dX′,

write

dx · dx = (RdX′) · (RdX′) = dX′ · (RTRdX′) = dX′ · dX′ , (3.94)
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which confirms that R induces a length-preserving transformation on dX′. In conclusion,

the physical meaning of the right polar decomposition (3.86)1 is that, under the action of F,

the infinitesimal material line element represented by dX is first subjected to a stretch U,

generally accompanied by some rotation13, to its final length ds, then is rigidly transformed

to its final state dx by R, see Figure 3.13.

dxdX dX′

U R

Figure 3.13. Interpretation of the right polar decomposition.

Turning attention to the left polar decomposition (3.86)2 , note, with the aid of (3.33),

that

dx = FdX = (VR)dX = V(RdX) . (3.95)

This, again, implies that the deformation of dX may be interpreted as taking place in two

stages. In the first one, the vector dX is mapped into dx′ = RdX of length ds′, while in the

second one, dx′ is mapped into Vdx′ = dx. For the first step, note that

dx′ · dx′ = (RdX) · (RdX) = dX · (RTRdX) = dX · dX , (3.96)

which means that the mapping from dX to dx′ is length-preserving. For the second step,

recalling (3.95) and the definition of dx′, and employing (3.44), (3.56), (3.91), and the

13Note that, in general, UdX is not parallel to dX.
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symmetry of V write,

ds′ 2 = dx′ · dx′

= (V−1dx) · (V−1dx)

= dx ·V−T (V−1dx)

= dx ·B−1dx

= (mds) · (B−1mds)

= ds2 m ·B−1m

=
1

λ2
ds2 , (3.97)

which implies that V induces the full stretch λ during the mapping of dx′ to dx. Thus, the

physical meaning of the left polar decomposition (3.86)2 is that, under the action of F, the

infinitesimal material line element represented by dX is first subjected to a rigid transfor-

mation by R, followed by stretching (generally, with further rotation) to its final state dx

due to V, see Figure 3.14.

dxdX dx′

VR

Figure 3.14. Interpretation of the left polar decomposition.

It is conceptually desirable to explore the possible decomposition of the deformation

gradient into a pure rotation and a pure stretch or vice versa. To this end, consider first

the right polar decomposition in Equation (3.92). Here, for the stretch U to be pure, the

vectors dX and dX′ need to be parallel, namely

dX′ = UdX = λdX , (3.98)

or, upon recalling (3.43),

UM = λM . (3.99)

Equation (3.99) represents a linear symmetric eigenvalue problem. The eigenvalues λA > 0

of (3.99) are the principal stretches and the associated eigenvectors MA are the principal

directions of stretch.
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As argued in Section 2.4, the spectral representation theorem implies that U may be

expressed as

U =
3∑

A=1

λ(A)M(A) ⊗M(A) , (3.100)

where {M1,M2,M3} is a right-hand orthonormal basis consisting of unit eigenvectors of U.

In view of (3.90), the spectral representation (3.100) implies that

C = U2 =

(
3∑

A=1

λ(A)M(A) ⊗M(A)

)(
3∑

B=1

λ(B)M(B) ⊗M(B)

)

=
3∑

A=1

3∑

B=1

λ(A)λ(B)(M(A) ⊗M(A))(M(B) ⊗M(B))

=
3∑

A=1

3∑

B=1

λ(A)λ(B)(M(A) ·M(B))(M(A) ⊗M(B))

=
3∑

A=1

λ2
(A)M(A) ⊗M(A) (3.101)

and, by induction,

Um =
3∑

A=1

λm
(A)M(A) ⊗M(A) , (3.102)

for any integer m. More generally, Um may be defined as above for any real m. Again, in

linear-algebraic terms this is tantamount to raising a diagonal 3× 3 matrix to any power by

merely raising all of its components to that power, provided this operation is well-defined.

Also, it is clear from (3.102) that any two tensors Um and Un with m 6= n are co-axial.

Given (3.100), it is now possible to formally solve (3.90) for U, such that

U = C1/2 , (3.103)

since C is positive-definite, hence its eigenvalues {λA} are positive.

Following an analogous procedure for the left polar decomposition, note that for the left

stretch V to be pure it is necessary that

dx = Vdx′ = λdx′ (3.104)

or, upon recalling (3.43) and (3.95),

VRM = λRM . (3.105)
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Comparing the eigenvalue problems in (3.99) and (3.105), it is readily concluded that U

and V have the same eigenvalues but the eigenvectors of V are rotated by R relative to those

of U. Appealing to the spectral representation theorem in (3.100), one finds from (3.105)

that

V =
3∑

i=1

λ(i)m(i) ⊗m(i) (3.106)

and also, in view of (3.91),

B =
3∑

i=1

λ2
(i)m(i) ⊗m(i) , (3.107)

where λi and mi = RMi, i = 1, 2, 3, are the principal stretches and the principal directions,

respectively. More generally, any (not necessarily integer) power of V can be expressed as

Vm =
3∑

i=1

λm
(i)m(i) ⊗m(i) . (3.108)

In particular, with reference to (3.91), the positive-definiteness of B allows for the formal

representation of V as

V = B1/2 . (3.109)

Example 3.2.5: A two-dimensional motion and deformation
Consider a motion χ defined in component form as

x1 = χ1(XA, t) = (
√
a cosϑ)X1 − (

√
a sinϑ)X2

x2 = χ2(XA, t) = (
√
a sinϑ)X1 + (

√
a cosϑ)X2

x3 = χ3(XA, t) = X3 ,

where a = a(t) > 0 and ϑ = ϑ(t). This is clearly a planar motion, specifically independent of X3.
The components FiA = χi,A of the deformation gradient can be easily determined as

[FiA] =





√
a cosϑ −√

a sinϑ 0√
a sinϑ

√
a cosϑ 0

0 0 1



 .

This is, again, a spatially homogeneous deformation. Further, note that det(FiA) = a > 0, hence the motion
is always invertible.

The components CAB of C and the components UAB of U can be directly determined as

[CAB ] =





a 0 0
0 a 0
0 0 1




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and

[UAB ] =





√
a 0 0
0

√
a 0

0 0 1



 .

Also, recall that
CM = λ2M ,

which implies that λ1 = λ2 =
√
a and λ3 = 1.

Given that U is known, one may apply the right polar decomposition to determine the rotation tensor R.
Indeed, in this case,

[RiA] =





√
a cosϑ −√

a sinϑ 0√
a sinϑ

√
a cosϑ 0

0 0 1









1√
a

0 0

0 1√
a

0

0 0 1



 =





cosϑ − sinϑ 0
sinϑ cosϑ 0
0 0 1



 .

Note that this motion yields pure stretch for ϑ = 2kπ, where k = 0, 1, 2, . . ..

Now, attempt a reinterpretation of the right polar decomposition (3.86)1, in light of

the discussion of principal stretches and directions. Indeed, when U acts on infinitesimal

material line elements which are aligned with its principal directions {MA}, then it subjects

them to a pure stretch. Subsequently, the stretched elements are reoriented to their final

direction by the action of R, see Figure 3.15. A corresponding reinterpretation of the left

x

X
M1

M2

M3

λ1M1

λ2M2

λ3M3

λ1RM1

λ2RM2
λ3RM3

U

R

Figure 3.15. Interpretation of the right polar decomposition relative to the principal directions

{MA} and associated principal stretches {λA}.

polar decomposition can be realized along the preceding lines for the right decomposition.

Specifically, here the infinitesimal material line elements that are aligned with the principal

stretches {MA} are first reoriented by R and subsequently subjected to a pure stretch to

their final length by the action of V, see Figure 3.16.

Turning to the polar factor R in (3.86), recall that it is an orthogonal tensor, which,

according to (2.69), implies that det (RTR) = 1, hence detR = ±1.

It is instructive at this point to consider the representation of a proper orthogonal ten-
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x

X
M1

M2

M3

RM1

RM2

RM3

λ1RM1

λ2RM2
λ3RM3

V

R

Figure 3.16. Interpretation of the left polar decomposition relative to the principal directions

{RMi} and associated principal stretches {λi}.

sor R, resolved on a common (i.e., not mixed) basis to be determined. In this case,

RT (R− ı) = ı−RT = −(R− ı)T , (3.110)

where ı denotes here the identity tensor in the common basis. Upon invoking elementary

properties of determinants, it follows from (3.110) that

detRT det(R− ı) = det(R− ı)

= − det(R− ı)T = − det(R− ı) ,
(3.111)

hence

det(R− ı) = 0 . (3.112)

Therefore, R has at least one unit eigenvalue. Denote p a unit eigenvector associated with

the above eigenvalue (there exist two such unit vectors which are equal and opposite), and

consider two unit vectors q and r = p × q that lie on a plane normal to p. It follows that

{p,q, r} form a right-hand orthonormal basis of E3 and, thus, R can be expressed with

reference to this basis as

R = Rppp⊗ p+Rpqp⊗ q+Rprp⊗ r+Rqpq⊗ p+Rqqq⊗ q+Rqrq⊗ r

+Rrpr⊗ p+Rrqr⊗ q+Rrrr⊗ r . (3.113)

Note that, since p is an eigenvector of R,

Rp = p ⇒ Rppp+Rqpq+Rrpr = p , (3.114)

which implies that

Rpp = 1 , Rqp = Rrp = 0 . (3.115)
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Moreover, given that R is orthogonal,

R−1p = RTp = p ⇒ Rppp+Rpqq+Rprr = p , (3.116)

therefore

Rpq = Rpr = 0 . (3.117)

Taking into account (3.115) and (3.117), the orthogonality condition RTR = ı can be

expressed as

(p⊗ p+Rqqq⊗ q+Rqrr⊗ q+Rrqq⊗ r+Rrrr⊗ r)

(p⊗ p+Rqqq⊗ q+Rqrq⊗ r+Rrqr⊗ q+Rrrr⊗ r)

= p⊗ p+ q⊗ q+ r⊗ r . (3.118)

and, after reducing the terms on the left-hand side,

p⊗ p+ (R2
qq +R2

rq)q⊗ q+ (R2
rr +R2

qr)r⊗ r

+ (RqqRqr +RrqRrr)q⊗ r+ (RrrRrq +RqrRqq)r⊗ q

= p⊗ p+ q⊗ q+ r⊗ r . (3.119)

The above equation implies that

R2
qq +R2

rq = 1 , (3.120)

R2
rr +R2

qr = 1 , (3.121)

RqqRqr +RrqRrr = 0 , (3.122)

RrrRrq +RqrRqq = 0 , (3.123)

where it is noted that Equations (3.122) and (3.123) are identical, as expected, due to the

symmetry of RTR. Equations (3.120) and (3.121) imply that there exist angles θ and φ,

such that

Rqq = cos θ , Rrq = sin θ , (3.124)

and

Rrr = cosφ , Rqr = sinφ . (3.125)

It follows from (3.122) (or, equivalently, from (3.123)) that

cos θ sinφ+ sin θ cosφ = sin (θ + φ) = 0 , (3.126)
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thus

φ = −θ + 2kπ or φ = π − θ + 2kπ , (3.127)

where k is an arbitrary integer. It can be easily shown that the latter choice yields an

improper orthogonal tensor R (hence, is rejected), thus φ = −θ + 2kπ, and, given (3.125),

Rrr = cos θ , Rqr = − sin θ . (3.128)

From (3.113), (3.115), (3.117), (3.124), and (3.128), it follows that R can be expressed as

R = p⊗ p+ cos θ (q⊗ q+ r⊗ r)− sin θ (q⊗ r− r⊗ q) . (3.129)

Using components relative to the basis {p,q, r}, equation (3.129) implies that

[Rab] =






1 0 0

0 cos θ − sin θ

0 sin θ cos θ




 . (3.130)

The angle θ that appears in (3.129) can be geometrically interpreted as follows: let an

arbitrary vector x be written in terms of {p,q, r} as

x = pp + qq + rr , (3.131)

where

p = p · x , q = q · x , r = r · x , (3.132)

and note that

Rx = pp+ (q cos θ − r sin θ)q + (q sin θ + r cos θ)r . (3.133)

Equation (3.133) indicates that, under the action of R, the vector x remains unstretched

and it rotates by an angle θ around the p-axis, where θ is assumed positive when directed

from q to r in the sense of the right-hand rule. This justifies the characterization of R as a

rotation tensor. The representation (3.129) of a proper orthogonal tensor R is often referred

to as Rodrigues’14 formula.

If R is improper orthogonal, the alternative solution in (3.127)2 in connection with the

negative unit eigenvalue p implies that Rx rotates by an angle θ around the p-axis and is

also reflected relative to the origin of the orthonormal basis {p,q, r}.
14Benjamin Olinde Rodrigues (1795–1851) was a French mathematician and banker.
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r

θ

Rx
p x

θ

q

r

q

q

r

Figure 3.17. Geometric interpretation of the rotation tensor R by its action on a vector x.

The preceding analysis may be repeated with only minor algebraic modifications for the

case of improper orthogonal tensors. However, upon noting that if R is proper orthogonal,

then −R is improper orthogonal, one may readily deduce the general representation of an

improper orthogonal tensor from (3.129). An immediate observation for improper orthogonal

tensors is that they possess an eigenvalue which is equal to −1. This means that there exists

a direction associated with the unit eigenvector p, such that Rp = −p. This explains why

improper orthogonal tensors are sometimes referred to as reflection tensors. Starting, again,

with the vector x in (3.131), Rx, with R improper orthogonal, rotates x by an angle θ

around the p-axis and is reflects relative to the origin of the orthonormal basis.

A simple counting check can now be employed to the polar decomposition (3.86). Indeed,

F has nine independent components and U (or V) has six independent components. At the

same time, R has three independent components, for instance two of the three components

of the unit eigenvector p and the angle θ.

3.3 Velocity gradient and other measures of deforma-

tion rate

Derivatives of the motion χ with respect to time and space were discussed in Sections 3.1 and

3.2, respectively. In the present section, attention is turned to mixed space-time derivatives of
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the motion, which yield measures of the rate at which deformation occurs in the continuum.

To this end, write the material time derivative of F as

Ḟ =
˙(

∂χ(X, t)

∂X

)

=
∂

∂X
˙

χ(X, t) =
∂v̂(X, t)

∂X
=

∂ṽ(x, t)

∂x

∂χ(X, t)

∂X
, (3.134)

where use is made of (3.11)1, (3.34), and the chain rule. Also, in the above derivation the

change in the order of differentiation between the derivatives with respect to X and t is

allowed under the assumption that the mixed second derivative
∂2
χ

∂X∂t
is continuous. The

preceding equation may be also written as

Ḟ = LF , (3.135)

in terms of the spatial velocity gradient tensor L ∈ L(TxR, TxR), defined according to

L = gradv =
∂ṽ

∂x
(3.136)

or, using components,

L =
∂ṽi
∂xj

ei ⊗ ej . (3.137)

Therefore, Equation (3.135) may be expressed in pure component form as

ḞiA = LijFjA . (3.138)

Owing to (3.135), the spatial velocity gradient satisfies the equation

dv =
∂ṽ

∂x
dx = Ldx . (3.139)

Since

ḋx =
d

dt
dx = d

(
d

dt
x

)

= dv , (3.140)

Equation (3.139) may be alternatively expressed as

ḋx = Ldx . (3.141)

Example 3.3.1: Material time derivative of an infinitesimal volume element and
the Jacobian J
Recall that the infinitesimal volume element dv in the current configuration may be expressed as in (3.75)1.
Upon taking the material time derivatives of both sides of this equation, one finds that

ḋv = dv1 · (dx2 × dx3) + dx1 · (dv2 × dx3) + dx1 · (dx2 × dv3)
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or, upon invoking (3.139),

ḋv = Ldx1 · (dx2 × dx3) + dx1 · (Ldx2 × dx3) + dx1 · (dx2 × Ldx3)

= [Ldx1, dx2, dx3] + [dx1,Ldx2, dx3] + [dx1, dx2,Ldx3] .

It follows from the preceding equation and the definition of the trace of a tensor in (2.53)1 that

ḋv = trL dv = div v dv . (3.142)

This derivation is noteworthy because it does not depend on the existence of a reference configuration. An
alternative derivation of the same result is found in Exercise 3-33.

In light of (3.76) and (3.142), one may conclude that

ḋv = ˙JdV = J̇dV

= divv dv = divv(JdV ) ,

therefore
J̇ = J divv . (3.143)

Recalling that J = 1 for any isochoric motion, it follows from (3.143) that the condition ÷v = 0 is necessary
for such motions. The same is also a sufficient condition, provided there is a configuration of the body at which
J = 1.

Next, recall that any tensor on a common basis can be uniquely decomposed into a

symmetric and a skew-symmetric part, therefore L can be written as

L = D+W , (3.144)

where D ∈ L(TxR, TxR), defined as

D =
1

2
(L+ LT ) , (3.145)

is the rate-of-deformation tensor, which is symmetric, while W ∈ L(TxR, TxR), defined as

W =
1

2
(L− LT ) , (3.146)

is the vorticity (or spin) tensor, which is skew-symmetric.

In view of (3.50), (3.145), and (3.135), one may employ the product rule to express the

material time derivative of the right Cauchy-Green deformation tensor C as

Ċ =
˙

FTF = ḞTF+ FT Ḟ = (LF)TF+ FT (LF) = FT (LT + L)F = 2FTDF . (3.147)

This relation can be expressed in pure component form as

ĊAB = 2FiADijFjB . (3.148)
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Likewise, for the left Cauchy-Green deformation tensor, one may use (3.57) and (3.135) in

conjunction with the product rule to write

Ḃ =
˙

FFT = ḞFT + FḞT = (LF)FT + F(LF)T = LB+BLT . (3.149)

In pure component form, this translates to

Ḃij = LikBkj + BikLjk . (3.150)

Similar results may be readily obtained for the rates of the Lagrangian and Eulerian strain

tensors. Specifically, it can be immediately deduce with the aid of (3.69) and (3.147) that

Ė = FTDF (3.151)

and, also, by appeal to (3.72) and (3.149) that

ė =
1

2
(B−1L+ LTB−1) , (3.152)

see also Exercise 3-36.

Proceed now to discuss the physical interpretations of the tensors D and W. To this

end, start from (3.47), take the material time derivatives of both sides, and use (3.135) to

obtain the relation

λ̇m+ λṁ = ḞM+ FṀ

= (LF)M = L(FM) = L(λm) = λLm . (3.153)

Note that in the above equation Ṁ = 0, since M is a fixed vector in the fixed reference

configuration, hence does not vary with time. Furthermore, given that m is a unit vector,

˙m ·m = 2ṁ ·m = 0 , (3.154)

that is, ṁ is always orthogonal to m, see Figure 3.18. Upon taking the dot-product of each

side of (3.153) with the unit vector m, it follows that

λ̇m ·m+ λṁ ·m = λ̇+ λṁ ·m = λ(Lm) ·m . (3.155)

In view of (3.154) and the unity of m, Equation (3.153) simplifies to

λ̇ = λm · Lm . (3.156)
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1

m

ṁ

Figure 3.18. A unit vector m and its rate ṁ.

Since, on account of (2.30) the skew-symmetric tensor W satisfies

m ·Wm = m · (−WT )m = −m ·Wm = −m ·Wm , (3.157)

hence

m ·Wm = 0 , (3.158)

one may exploit (3.144) to rewrite (3.156) as

λ̇ = λm · (D+W)m = λm ·Dm (3.159)

or, alternatively, as
˙lnλ = m ·Dm . (3.160)

Thus, the tensorD fully determines the material time derivative of the logarithmic stretch lnλ

for a material line element along a direction m in the current configuration. In particular,

this material time derivative equals to the projection of the vector Dm along the m-axis. In

fact, if m is taken to align with the basis vector e1 (which can be done without any loss of

generality), then, according to (3.160), the material time derivative of the logarithmic stretch

along e1 is equal to the diagonal component D11 of D. For a geometric interpretation of the

off-diagonal components of D, see Exercise 3-37.

Example 3.3.2: Killing’s15 theorem
Recall that, by definition, the distance between any two material points in a rigid motion remains constant at
all time. This is equivalent to stating that

d

dt
ds = 0 ,

where ds denotes, as usual, the distance between any two infinitesimally close points at time t. Upon using,
equivalently, the square of ds in the preceding condition, one concludes with the aid of (3.44), (3.141), (3.144),
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and (3.158) that

d

dt
ds2 =

d

dt
(dx · dx)

= 2dx · d(dx)
dt

= 2dx · dv
= 2dx · Ldx
= 2dx ·Ddx = 0 ,

which holds true for any dx if, and only if, D = 0. This proves Killing’s theorem, which asserts that D = 0 is
a necessary and sufficient condition for a motion to be rigid.

Given the definition of W in (3.146) and recalling (2.38) and (2.94), the associated axial

vector w satisfies the relation

w =
1

2
ǫijkWjiek

=
1

4
ǫijk(vj,i − vi,j)ek

=
1

4
(ǫijkvj,i − ǫijkvi,j)ek

=
1

4
(ǫijkvj,i − ǫjikvj,i)ek

=
1

2
ǫijkvj,iek

=
1

2
curlv . (3.161)

In this case, the axial vector w is called the vorticity vector.16

Amotion is termed irrotational ifW = 0 (or, equivalently,w = 0).

Example 3.3.3: Rates of deformation for a simple motion
Consider a motion whose velocity is given by

v = ṽ(x, t) = x2x3e1 + x3x1e2 + 3x1x2e3 .

The components of the spatial velocity gradient are found from (3.136) to be

[Lij ] =





0 x3 x2
x3 0 x1
3x2 3x1 0



 ,

while those of the rate-of-deformation tensor and vorticity tensor are found respectively from (3.145) and (3.146)

15Wilhelm Killing (1847–1923) was a German mathematician.
16In some references, the vorticity vector is defined as simply curlv, hence is taken to be two times the

axial vector of W.
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to be

[Dij ] =





0 x3 2x2
x3 0 2x1
2x2 2x1 0





and

[Wij ] =





0 0 −x2
0 0 −x1
x2 x1 0



 .

The components of the vorticity vector are given, according to (3.161), by

[wk] =





x1
−x2
0



 .

Let w = w̃(x, t) be the vorticity vector field at a given time t. The vortex line through x

at time t is the space curve that passes through x and is tangent to the vorticity vector

field w̃ at all of its points. Hence, in analogy to the definition of streamlines in (3.30), the

equations for vortex lines are

dy = w̃(y, t)dτ , y(τ0) = x , (t fixed) (3.162)

For an irrotational motion, any line passing through x at time t is a vortex line.

Returning to the physical interpretation of W, note that starting from (3.153) and us-

ing (3.144) leads to

ṁ = Lm− λ̇

λ
m =

(

L− λ̇

λ
i

)

m

=

(

D− λ̇

λ
i

)

m+Wm , (3.163)

which holds for any direction m in the current configuration. Now, let m̄ be a unit vector

that lies along a principal direction of D in the current configuration, hence

Dm̄ = γ̄m̄ , (3.164)

where γ̄ is the eigenvalue of D associated with the eigenvector m̄. It follows from (3.160)

and (3.164) that

m̄ ·Dm̄ = γ̄m̄ · m̄ = γ̄ =
˙̄λ

λ̄
=

˙
ln λ̄ , (3.165)

that is, the eigenvalues of D are equal to the material time derivatives of the logarithmic

stretches ln λ̄ of line elements along the eigendirections m̄ in the current configuration.
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Setting m = m̄ in Equation (3.163) and using (3.164) and (3.165) leads to

˙̄m = Wm̄ = w × m̄ . (3.166)

Therefore, the material time derivative of a unit vector m̄ along a principal direction of D

is determined by (3.166). Recalling from rigid-body dynamics the formula relating linear

to angular velocities, one may conclude that w plays the role of the angular velocity of a

line element which, in the current configuration, lies along a principal direction m̄ of D,

see Figure 3.19. For all other directions m, Equation (3.163) implies that both D and W

contribute to the determination of ṁ.

m̄

˙̄m = w × m̄

Figure 3.19. A physical interpretation of the vorticity vector w as angular velocity of a unit

eigenvector m̄ of D.

Example 3.3.4: Vorticity and vortex lines in a circular flow
Consider a steady motion whose velocity is given by

v = ṽ(x, t) = −ax2e1 + ax1e2 ,

where a > 0. The components of the spatial velocity gradient are found from (3.136) to be

[Lij ] =





0 −a 0
a 0 0
0 0 0



 .

Since, here, L happens to be skew-symmetric, its components coincide with the components [Wij ] of the
vorticity tensor W. Using (3.161), the vorticity vector is easily found to be w = ae3 and the vortex lines from
any point are defined as x3 = τ , as in the figure.
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x1

x2

v

w

Another useful physical interpretation of D and W is given in Exercise 3-41.

3.4 Superposed rigid-body motions

Consider a body B undergoing a motion χ : R0 × R 7→ R and, take another invertible

motion χ
+ : R0 × R

+ of the same body, such that

x+ = χ
+(X, t) , (3.167)

where χ and χ
+ differ by a rigid-body motion. Then, with reference to Figure 3.20, one

may write

x+ = χ
+(X, t) = χ

+(χ−1
t (x), t) = χ̄

+(x, t) , (3.168)

where χ̄ is a rigid-body motion superposed on the original motion χ. One may equivalently

express (3.168) as

x+ = χ
+
t (X) = χ̄

+
t (x) = χ̄

+
t (χt(X)) . (3.169)

Equation (3.169) implies that χ
+
t may be thought of as the composition of the placement

χ̄
+
t with χt, that is,

χ
+
t = χ̄

+
t ◦ χt , (3.170)

see also Section 2.4. Clearly, the superposed motion χ̄
+(x, t) is invertible for fixed t, since χ+

is assumed invertible for fixed t, and, in view of (3.169) and (3.170), χ̄+−1
t = χt ◦ χ+−1

t .

Next, take a second point Y in the reference configuration, so that y = χ(Y, t) and write

y+ = χ
+(Y, t) = χ

+(χ−1
t (y), t) = χ̄

+(y, t) . (3.171)

Recalling that R and R+ differ only by a rigid transformation, one may conclude that

(x− y) · (x− y) = (x+ − y+) · (x+ − y+)

=
[
χ̄

+(x, t)− χ̄
+(y, t)

]
·
[
χ̄

+(x, t)− χ̄
+(y, t)

]
, (3.172)
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x

x+

X

y

y+

Y

R0

R

R+

χ

χ
+

χ̄
+

Figure 3.20. Configurations associated with motions χ and χ
+ differing by a superposed rigid-

body motion χ̄
+.

for all x, y in the region R at any time t. Since x and y are chosen independently, one may

differentiate (3.172) first with respect to, say, x to get

x− y =

[
∂χ̄+(x, t)

∂x

]T

[χ̄+(x, t)− χ̄
+(y, t)] . (3.173)

Then, Equation (3.173) may be differentiated with respect to y, which leads to

i =

[
∂χ̄+(x, t)

∂x

]T [
∂χ̄+(y, t)

∂y

]

. (3.174)

Since the motion χ̄
+ is invertible, Equation (3.174) may be equivalently written as

[
∂χ̄+(x, t)

∂x

]T

=

[
∂χ̄+(y, t)

∂y

]−1

. (3.175)

It follows that the left- and right-hand side of (3.175) should be necessarily functions of time

only, hence there is a tensor Q ∈ L(TxR, TxR), such that

[
∂χ̄+(x, t)

∂x

]T

=

[
∂χ̄+(y, t)

∂y

]−1

= QT (t) . (3.176)

Equation (3.176) implies that

∂χ̄+(x, t)

∂x
=

∂χ̄+(y, t)

∂y
= Q(t) , (3.177)

which, in view of (3.174), implies that QT (t)Q(t) = i, therefore Q(t) is an orthogonal tensor.

Further, note that upon using (3.177) and the chain rule, the deformation gradient F+ of
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the motion χ
+ is written as

F+ =
∂χ+

∂X
=

∂χ̄+

∂x

∂χ

∂X
= QF . (3.178)

Since, by assumption, both motions χ and χ
+ lead to deformation gradients with positive

Jacobians, Equation (3.178) implies that detQ > 0, hence detQ = 1, that is, Q is proper

orthogonal.

Given that Q is a function of time only, Equation (3.177)1 may be directly integrated

with respect to x, leading to

x+ = χ̄
+(x, t) = Q(t)x+ c(t) , (3.179)

where c(t) is a vector function of time. Equation (3.179) is the general form of the rigid-body

motion χ̄
+ superposed on the original motion χ.

Examine next the transformation of the velocity v under a superposed rigid-body motion.

To this end, using (3.179), one finds that

v+ = χ̇
+(X, t)

= χ̇
+
(x, t) =

˙
[Q(t)x+ c(t)] = Q̇(t)x+Q(t)v + ċ(t) . (3.180)

Since QQT = i, it can be readily concluded that

˙
QQT = Q̇QT +QQ̇T = 0 . (3.181)

Setting

Ω = Q̇QT (3.182)

or, equivalently,

Q̇ = ΩQ , (3.183)

it follows from (3.181) that the tensor Ω ∈ L(TxR, TxR) is skew-symmetric, hence is as-

sociated with an axial vector ω(t). Returning to (3.180), write, with the aid of (3.179)

and (3.182),

v+ = ΩQx+Qv + ċ = Ω(x+ − c) +Qv + ċ . (3.184)

Invoking the definition of the axial vector ω in (2.36), one may further rewrite (3.184) as

v+ = ω ×Qx+Qv + ċ = ω × (x+ − c) +Qv + ċ . (3.185)
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It is clear from (3.184) and (3.185) that Ω and ω can be thought of as the tensor and vector

representations of the angular velocity of the superposed rigid-body motion, respectively.

Consequently, the first term on the right-hand side of (3.184) or (3.185) signifies the contri-

bution to the velocity due to the angular velocity of the superposed rigid motion. In addition,

the second and third terms on the right-hand side of (3.184) or (3.185) correspond to the

apparent velocity and the translational velocity due to the superposed rigid-body motion,

respectively.

Starting from (3.184)1, it is also easy to show with the aid of (3.182) that

a+ = Ω̇Qx+Ω2Qx+ 2ΩQv +Qa+ c̈

= Ω̇(x+ − c) +Ω2(x+ − c) + 2Ω[v+ −Ω(x+ − c)− ċ] +Qa+ c̈
(3.186)

or, equivalently,

a+ = ω̇ ×Qx+ ω × (ω ×Qx) + 2ω ×Qv +Qa+ c̈

= ω̇ × (x+ − c) + ω × [ω × (x+ − c)] + 2ω × [v+ −Ω(x+ − c)− ċ] +Qa+ c̈ .
(3.187)

The first term on the right-hand side of (3.186) or (3.187) is referred to as the Euler ac-

celeration and is due to non-vanishing angular acceleration Ω̇ of the superposed rigid-body

motion. Likewise, the second term is known as the centrifugal acceleration. Also, the third

term on the right-hand side of (3.186) is the Coriolis acceleration, while the last two are the

apparent acceleration in the rotated frame and the translational acceleration, respectively.

Given (3.178)3 and recalling the right polar decomposition of F in (3.86)1, write

F+ = R+U+

= QF = QRU ,
(3.188)

where R, R+ are proper orthogonal tensors and U, U+ are symmetric positive-definite

tensors. Since, clearly,

(QR)T (QR) = (RTQT )(QR) = RT (QTQ)R = RTR = I (3.189)

and also det (QR) = (detQ)(detR) = 1, therefore QR is proper orthogonal, the uniqueness

of the polar decomposition, in conjunction with (3.188), necessitates that

R+ = QR (3.190)

and

U+ = U . (3.191)
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Similarly, Equation (3.178)3 and the left decomposition of F in (3.86)2 yield

F+ = V+R+ = V+(QR)

= QF = Q(VR) ,
(3.192)

which implies that

V+QR = QVR , (3.193)

hence,

V+ = QVQT . (3.194)

It follows readily from (3.50) and (3.178)3 that

C+ = F+T

F+ = (QF)T (QF) = (FTQT )(QF) = FT (QQT )F = FTF = C (3.195)

and, correspondingly, from (3.57) and (3.178)3, that

B+ = F+F+T

= (QF)(QF)T = (QF)(FTQT ) = Q(FFT )QT = QBQT . (3.196)

It follows from Equations (3.69), (3.72) and (3.195), (3.196) that

E+ =
1

2
(C+ − I) =

1

2
(C− I) = E (3.197)

and

e+ =
1

2

[
i− (B+)−1

]
=

1

2

[
i− (QBQT )−1

]

=
1

2
(i−Q−TB−1Q−1)

=
1

2
(i−QB−1QT )

=
1

2
Q(i−B−1)QT

= QeQT . (3.198)

The transformation properties of other kinematic quantities of interest under superposed

rigid-body motion may be established by appealing to the preceding results. For instance,

given (3.33) and (3.178)3, infinitesimal material line elements transform as

dx+ = F+dX = (QF)dX = Q(FdX) = Qdx . (3.199)

In addition, given (3.49) and (3.195), it follows that

(λ+)2 = M ·C+M = M ·CM = λ2 , (3.200)
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that is, the stretch λ remains unchanged under superposed rigid-body motions, as expected.

Similarly, recalling (3.76) and taking into account (3.178)3, infinitesimal material volume

elements transform as

dv+ = J+dV = det(QF)dV = (detQ)(detF)dV = (detF)dV = JdV = dv . (3.201)

For infinitesimal material area elements, Equation (3.82), in conjunction with (3.178)3, give

rise to

da+ = n+da+ = J+(F+)−TNdA

= J(QF)−TNdA = J(Q−TF−T )NdA = JQF−TNdA = Qnda = Qda .

(3.202)

Now, taking the dot-product of each side of (3.202) with itself yields

(n+da+) · (n+da+) = (Qnda) · (Qnda) , (3.203)

therefore (da+)2 = da2, hence also

da+ = da , (3.204)

provided da is taken to be positive from the outset, and also

n+ = Qn . (3.205)

Example 3.4.1: A special superposed rigid-body motion
Consider the special case where χ(X, t) = X, that is, the motion is such that the body remains in its reference
configuration at all times. Now, Equation (3.179)2 reduces to

x+ = QX+ c ,

and, since the velocity v vanishes, Equation (3.180) becomes

v+ = ω × (x+ − c) + ċ .

A geometric interpretation of the preceding equation is demonstrated in Figure 3.21.
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EA, ei

X,x

QX

x+

ċ

v+

x+ − c

ω × (x+ − c)

R0,R R+

Figure 3.21. A rigid-motion motion superposed on the reference configuration

For this case, and in light of the vanishing deformation (F = I), equations (3.178)3, (3.195), (3.196),
(3.197) and (3.198) imply that

F+ = Q , C+ = I , B+ = i , E+ = 0 , e+ = 0 .

Lastly, examine how the various tensorial measures of deformation rate transform under

superposed rigid-body motions. Starting from the definition (3.136) of the spatial velocity

gradient, write

L+ =
∂ṽ+

∂x+
=

∂

∂x+
[Ω(x+ − c) +Qṽ + ċ]

= Ω+
∂(Qṽ)

∂x+

= Ω+
∂(Qv)

∂x

∂χ

∂x+

= Ω+Q
∂ṽ

∂x

∂

∂x+
[QT (x+ − c)]

= Ω+QLQT , (3.206)

where use is also made of (3.179), (3.184), and the chain rule. Also, the rate-of-deformation

tensor D transforms according to

D+ =
1

2
(L+ + L+T )

=
1

2
(Ω+QLQT ) +

1

2
(Ω+QLQT )T

=
1

2
(Ω+ΩT ) +Q

1

2
(L+ LT )QT

= QDQT , (3.207)
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where use is made of the skew-symmetry of Ω. Likewise, for the vorticity tensor W, one

may write

W+ =
1

2
(L+ − L+T )

=
1

2
(Ω+QLQT )− 1

2
(Ω+QLQT )T

=
1

2
(Ω−ΩT ) +Q

1

2
(L− LT )QT

= Ω+QWQT . (3.208)

Example 3.4.2: Powers of objective spatial tensors
Consider any objective spatial tensor, such as the rate-of-deformation D. In this case, D2 is also objective.
Indeed,

(D+)2 = D+D+ = (QDQT )(QDQT ) = QD(QTQ)DQT = QD2QT .

The fact that Dn is objective, for any positive integer n, can be readily proved using mathematical induction.

A vector or tensor is called objective if it transforms under superposed rigid-body motions

in the same manner as its basis, when the latter is itself subject to rigid transformation due to

the superposed motion. In this case, the spatial basis {ei} would transform to {Qei}, while
the referential basis {EA} would remain unchanged, since the reference configuration is not

affected by the rigid-body motion superposed on the current configuration, see Figure 3.22.

The immediate implication of objectivity is that the components of an objective vector or

tensor relative to such a basis are unchanged under a superposed rigid-body motion over

their values in the original deformed configuration.

Adopting the preceding definition of objectivity, a spatial vector field is objective if it

transforms according to ( · )+ = Q( · ), while a referential one is objective if it remains

unchanged. Hence, the line element dx and the unit normal n are objective, according

to (3.199) and (3.205), while the velocity v and the acceleration a are not objective, as

seen from (3.180) and (3.186). Likewise, a spatial tensor field is objective if it transforms

according to ( · )+ = Q( · )QT . This is because its tensor basis {ei ⊗ ej} would transform

to {(Qei) ⊗ (Qej)} = Q{ei ⊗ ej}QT . Hence, spatial tensors such as B, V, e, and D are

objective, in view of Equations (3.196), (3.194), (3.198), and (3.207), while L and W are

not objective, due to the form of their transformation rules in (3.136) and (3.146). As

argued in the case of vectors, referential tensor fields are objective when they do not change

under superposed rigid-body motions. Hence, C, U and E are objective, as stipulated
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x

x+

X

R0

R

R+

{EA}

{ei}

{Qei}

Figure 3.22. Basis vectors in R0 and R and rigidly rotated basis vectors in R+.

by (3.195), (3.191) and (3.197). It is easily deduced that two-point tensors are objective if

they transform as ( · )+ = Q( · ) or ( · )+ = ( · )QT depending on whether the first or second

leg of the tensor is spatial, respectively. By this token, Equations (3.178)3 and (3.190)

imply that the deformation gradient F and the rotation R are objective. Finally, scalars

are termed objective if they remain unchanged under superposed rigid-body motions. The

infinitesimal volume and area elements are examples of such objective tensors, according

to (3.194) and (3.204), respectively.

In closing, note that the superposed rigid-body motion operation ( · )+ commutes with

the transposition ( · )T , inversion ( · )−1 and material time derivative
˙

( · ) operations. These

commutation properties can be verified by direct calculation.

3.5 Exercises

3-1. Consider a motion χ of a deformable body B, defined by

x1 = χ1(XA, t) = e−tX1 − tetX2 + tX3 ,

x2 = χ2(XA, t) = te−tX1 + etX2 − tX3 , (†)
x3 = χ3(XA, t) = etX3 ,

where all components have been taken with reference to a fixed orthonormal basis {e1, e2, e3}.

(a) Obtain directly from (†) an explicit functional form of the components of the inverse
χ
−1
t of the motion χ at a fixed time t.

(b) Determine the velocity vector v using the referential and the spatial description.

(c) Identify any stagnation points for the given motion.
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(d) Determine the acceleration vector a using the referential and the spatial description.

(e) Let a scalar function φ be defined according to

φ = φ̃(x1, x2, x3, t) = ax1t ,

where a is a constant. Express φ in referential form as φ = φ̂(X1, X2, X3, t).

(f) Let a scalar function ψ be defined according to

ψ = ψ̂(X1, X2, X3, t) = bX1t ,

where b is a constant. Express ψ in spatial form as ψ = ψ̃(x1, x2, x3, t).

(g) Find the material time derivatives of φ and ψ using both their referential and spatial
representations.

(h) Find the parametric form of the pathline for a particle which at time t = 0 occupies the
point X = e1 + e3. Also, plot the projection of the same pathline on the (t, x1)- and
the (t, x2)-plane for t ∈ [0, 2].

3-2. A homogeneous motion χ of a deformable body B is specified by

x1 = χ1(XA, t) = X1 + αt ,

x2 = χ2(XA, t) = X2 e
βt ,

x3 = χ3(XA, t) = X3 ,

where α and β are non-zero constants, and all components are taken with reference to a
common fixed orthonormal basis {EA}.

(a) Determine the components of the deformation gradient F and verify that the above
motion is invertible at all times.

(b) Determine the components of the velocity vector v in both the referential and spatial
descriptions.

(c) Determine the particle pathline for a particle which at time t = 0 occupies a point with
position vector X = E1 +E2. Sketch the particle pathline on the (x1, x2)-plane for the
special case α = 1, β = 0.

(d) Determine the stream line that at time t = 1 passes through the point x = E1. Sketch
the stream line on the (x1, x2)-plane for the special case α = β = 1.

(e) Let a scalar function φ be defined according to

φ = φ̃(x, t) = c1x1x2 + c2x2 ,

where c1, c2 are constants. Find the material time derivative of φ. Under what condi-
tion, if any, is the surface defined by φ = 0 material?

(f) Determine the components of the proper orthogonal rotation tensor R and the sym-
metric positive-definite stretch tensor U, such that F = RU.
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3-3. Let the velocity field v of a continuum be expressed in spatial form as

v1(xi, t) = x21x2 , v2(xi, t) = −x1x22 , v3(xi, t) = x3t ,

with reference to a fixed orthonormal basis {e1, e2, e3}.

(a) Calculate the acceleration field a in spatial form.

(b) Use Lagrange’s criterion to determine whether or not each of the following surfaces is
material:

(i) f1(xi, t) = x1 + x2 − t = 0 ,

(ii) f2(xi, t) = x1x2 − 1 = 0 .

3-4. Let the velocity components of a steady fluid motion be given by

v1(xi, t) = −ax2 , v2(xi, t) = ax1 , v3(xi, t) = b ,

with reference to a fixed orthonormal basis {e1, e2, e3}, where a and b are positive constants.

(a) Show that divv = 0.

(b) Determine the streamlines of the flow in differential form and obtain a parametric form
of the streamline passing through x = e1.

3-5. Consider the scalar function f defined as

f =
1

2
viAijvj ,

where vi are the components of the spatial velocity vector v and Aij are the components of
a constant symmetric tensor A, with reference to a fixed orthonormal basis {e1, e2, e3}.

(a) Show that the material derivative of f is given by

ḟ =

(

∂vi

∂t
Aij +

∂vi

∂xk
Aijvk

)

vj .

(b) Evaluate ḟ , assuming that Aij = cδij , where c is a constant, and vi = xit.

3-6. Let the motion of a planar body be such that the surface σ defined by the equation

f(x1, x2, t) = tx1 − x2 + t2 − 1 = 0

is material at all times.

(a) Exploit the materiality of the surface σ to deduce the components of the velocity in the
spatial description and confirm that the motion is steady.

(b) Determine the acceleration of the body in the spatial description.
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(c) Find the algebraic equation for the streamline that passes through the point with co-
ordinates (x1, x2) = (1, 1).

3-7. Consider the planar velocity field

v = ṽ(x, t) = x1(1 + 2t)e1 + x2e2 ,

relative to the fixed orthonormal basis {e1, e2, e3}.

(a) Determine the pathline of a particle which occupies the point x̄ = e1+e2 at time t = 0.

(b) Determine the streamline that passes through the point x̄ = e1 + e2 at time t = 0.

(c) Determine the streak line at t = 0 that passes through the point x̄ = e1 + e2.

Plot the three lines on the same graph. Do they coincide? Do they have a common tangent
at x̄?

3-8. A homogeneous motion χ of a deformable body B is defined as

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ(t) is a non-negative function with γ(0) = 0, and all components are resolved on fixed
orthonormal bases {EA} and {ei} in the reference and current configuration, respectively.
This motion is termed simple shear.

(a) Determine the components of the deformation gradient F and verify that the motion is
invertible at all times.

(b) Determine the components of the right and left Cauchy-Green deformation tensors C
and B, respectively.

(c) Obtain the principal stretches λA, A = 1, 2, 3, and an orthonormal set of vectors MA,
A = 1, 2, 3, along the associated principal directions in the reference configuration.

(d) Determine the components of the right and left stretch tensors U and V, respectively,
as well as the components of the rotation tensor R.

(e) Let B occupy a region R0 in its reference configuration, where

R0 =
{
(X1, X2, X3) | | X1 |< 1 , | X2 |< 1

}
.

Sketch the projection of the deformed configuration on the (X1, X2)-plane at any given
time t. In this sketch, include the images of infinitesimal material line elements which
in the reference configuration lie in the directions E1, E2 and 1√

2
(E1 +E2). How much

stretch and rotation has each of these line elements experienced relative to the reference
configuration?
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3-9. A homogeneous motion χ of a deformable body B is specified in component form as

x1 = χ1(XA, t) = X1 + tX2 ,

x2 = χ2(XA, t) = −tX1 + X2 ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to fixed coincident orthonormal bases {EA}
and {ei} in the reference and current configuration, respectively.

(a) Verify that the body occupies the reference configuration at time t = 0.

(b) Determine the components of the deformation gradient F and establish that the above
motion is invertible at all times.

(c) Find the components of the proper orthogonal rotation tensor R and the symmetric
positive-definite stretch tensor U, such that F = RU.

(d) Determine the components of the velocity vector v in both the referential and spatial
descriptions.

(e) Identify the coordinates (x1, x2) of any stagnation points for all time t.

(f) Plot the path-line in the (x1, x2)-plane for a particle which at time t = 0 occupies a
point with position vector X = E1 +E2.

(g) Plot the stream-line in the (x1, x2)-plane at time t = 0 which passes through the point
x = e1 + e2.

(h) Let a scalar function φ be defined according to

φ = φ̃(x, t) = x1 − tx2 .

Find the material time derivative of φ. Is the surface defined by φ = 0 material?

3-10. Let the displacement vector u be defined at time t for any material point X according to

u(X, t) = x − X ,

where X and x denote the position vectors of the material point X in the reference and
current configuration, respectively. Also recall that fixed orthonormal bases {EA} and {ei}
are associated with the reference and the current configuration, respectively, so that

u = uAEA = uiei .

(a) Verify that, in component form,

FiA = δiA +
∂uB
∂XA

δiB .

(b) Show that the Lagrangian strain tensor E can be expressed as

E =
1

2
(Gradu + GradTu + GradTuGradu) ,

in terms of the referential displacement gradient tensor Gradu, defined as

Gradu =
∂uA
∂XB

EA ⊗EB .
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(c) Verify that, in component form,

F−1
Ai = δAi −

∂uj
∂xi

δAj .

(d) Show that the Eulerian strain tensor e can be expressed as

e =
1

2
(gradu + gradTu − gradTu gradu) ,

in terms of the spatial displacement gradient tensor gradu, defined as

gradu =
∂ui
∂xj

ei ⊗ ej .

3-11. Consider any two infinitesimal material line elements dX(1) = M(1)dS(1) and dX(2) = M(2)dS(2)

that originate at the same point X in the reference configuration and let Θ ∈ [0, π] be the
angle between unit vectors M(1) and M(2). The above line elements are mapped respectively
to dx(1) = m(1)ds(1) and dx(2) = m(2)ds(2) in the current configuration.

(a) Show that

cos θ =
1

λ1λ2
M(1) ·CM(2) , (†)

where θ ∈ [0, π] is the angle between unit vectors m(1) and m(2), and λ1, λ2 are the
stretches along directions M(1) and M(2), respectively.

(b) Show that, under a superposed rigid-body motion,

θ+ = θ .

(c) Define the relative displacement gradient tensor H as

H =
∂u

∂X
= F − I

and use (†) to show that

cos θ =
1

λ1λ2

[
cosΘ +M(1) · (H+HT )M(2) +M(1) · (HTH)M(2)

]
.

3-12. The square body shown in the figure below undergoes a motion defined by

x1 = χ1(XA, t) = X1 ,

x2 = χ2(XA, t) = X2 + β(t)X1(1−X2
2 ) ,

x3 = χ3(XA, t) = X3 ,

where β(t) > 0 is a given real-valued function of time, and all components have been taken
with respect to a fixed orthonormal basis {E1,E2,E3}.

ME185



94 Kinematics of deformation

X1

X2

1

1 1

1

(i) Determine the components FiA = χi,A of the deformation gradient F and place a
restriction on β which ensures that J = det(χi,A) > 0 everywhere in the body.

(ii) Determine the components CAB of the right Cauchy-Green deformation tensor C.

(iii) Calculate the stretch λ of a material line element located in the reference configuration
at (X1, 1) and pointing in the direction of the unit vector M = E1.

(iv) Calculate the stretch λ of a material line element located in the reference configuration
at (1, X2) and pointing in the direction of the unit vector M = E2. For which value(s)
of X2 does λ reach an extremum in this case and what is(are) the extremal values?

(v) Sketch the deformed shape of the line element X2 = 0.

3-13. Consider a continuum which undergoes a planar motion χ of the form

x1 = χ1(X1, X2, t) ,

x2 = χ2(X1, X2, t) ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal basis {E1,E2,E3}.
Suppose that at a given point X̄, an experimental measurement provides the following data:

• The stretch λ1 = 0.8 of an infinitesimal material line element in the direction of the
unit vector M(1) = E1.

• The stretch λ2 = 0.6 of an infinitesimal material line element in the direction of the
unit vector M(2) = E2.

• The stretch λn = 1.2 of an infinitesimal material line element in the direction of the
unit vector M(n) = 1√

2
(E1 +E2).

(a) Using all of the above data, determine the components of the right Cauchy-Green
deformation tensor C and the relative Lagrangian strain tensor E at point X̄.

(b) Determine the stretch λ at point X̄ for an infinitesimal material line element in the
direction of the unit vector M = 1

5(3E1 + 4E2).
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3-14. Consider a continuum which undergoes a planar motion χ of the form

x1 = χ1(X1, X2, t) ,

x2 = χ2(X1, X2, t) ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal bases {EA} and {ei}.
Suppose that at a given material point P , an experimental measurement at time t provides
the following data:

(i) The stretch λ1 = 2.0 of an infinitesimal material line element in the direction of
the unit vector M(1) = E1.

(ii) The stretch λ2 = 1.0 of an infinitesimal material line element in the direction of
the unit vector M(2) = E2.

(iii) The angle θ = 60o between the infinitesimal material line elements of (i) and (ii)
in the current configuration. Assume that these line elements lie in the current
configuration along the direction of unit vectors m(1) and m(2), respectively.

Using only the above data, determine the following kinematic quantities for the material
point P at time t:

(a) The components of the right Cauchy-Green deformation tensor C and the relative
Lagrangian strain tensor E.

(b) The stretch λ of an infinitesimal material line element in the direction of the unit vector
M = 1√

2
(E1 +E2).

(c) The Jacobian J of the deformation.

3-15. Consider a class of planar motions of a body, defined by

x1 = χ1(XA, t) = X1 + α(t)X2 ,

x2 = χ2(XA, t) = α(t)X2 ,

x3 = χ3(XA, t) = X3 ,

where α(t) is a given scalar-valued function of time, and all components have been taken
with respect to a fixed orthonormal basis {E1,E2,E3}.

(a) Determine the components χi,A of the deformation gradient F and place a restriction
on α which ensures that J = det(χi,A) > 0.

(b) Determine the components CAB of the right Cauchy-Green deformation tensor C.

(c) Given that the rotation tensor R for homogeneous deformations in the plane of E1 and
E2 can be expressed in the form

(RiA) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 ,
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apply the polar decomposition theorem to explicitly determine the components of the
rotation tensor R and the right stretch tensor U in terms of α.

(d) Calculate the stretch λ of a material line element lying in the reference configuration
along the direction of the unit vector

M =
1√
3
(E1 + E2 + E3) .

3-16. Let the motion of a planar body that occupies a square region R0 in the reference configu-
ration, as in the figure below, be given as

x1 = χ1(XA, t) =
1

2
[2 + a(t)]X1 −

1

2
a(t)X1X2 ,

x2 = χ2(XA, t) = −1

2
[1 + a(t)] +

1

2
[1− a(t)]X2 ,

x3 = χ3(XA, t) = X3 ,

where a(t) is a given function of time. Here, all components are taken relative to fixed
coincident orthonormal bases {EA} and {ei} in the reference and current configuration,
respectively.

R0

X1, x1

X2, x2

1 1

1

1

(a) Determine the components of the deformation gradient tensor F and calculate the
Jacobian J .

(b) Place any restrictions on the function a(t), such that J > 0 for all points in R0 and for
all times.

(c) Verify that all material line elements which are parallel to the X1-axis in the reference
configuration remain straight and parallel to the same axis in the current configuration.

(d) Verify that all material line elements which are parallel to the X2-axis in the reference
configuration remain straight in the current configuration.

(e) Use the information in parts (b)-(d) to draw a representative sketch of the deformed
configuration.
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(f) Determine the stretch λ at time t of an infinitesimal material line element located
at (X1, X2) = (1,−1) and oriented along the unit vector M = E2 in the reference
configuration.

3-17. Consider a planar body that occupies a square region R0 in the reference configuration.
Let the current configuration R be obtained by uniformly stretching the body along the
horizontal axis and subjecting it to a global 90-degree counterclockwise rotation, as in the
figure below.

R

R0

X1, x1

X2, x2

2

4

4

8

(a) Deduce an expression for the coordinates (x1, x2) of an arbitrary point X at time t as
a function of its coordinates (X1, X2) in the reference configuration.

(b) Determine the deformation gradient tensor F for any point at time t and calculate the
Jacobian J .

(c) Calculate the components of the right Cauchy-Green deformation tensor C and the left
Cauchy-Green deformation tensor B.

(d) Find the components of the polar factors U, V, and R.

(e) Calculate the stretch λ of a line element along the vector M = 1√
2
(E1 + E2) in the

reference configuration.

3-18. Consider a deformable body which in the reference configuration has a rectangular cross-
section of height h and width L, as in the following figure. At a fixed time t, the cross-section
is bent into an annulus of constant thickness h and average radius R = L/2π, such that:

• All straight material lines parallel to theX1-axis in the reference configuration transform
to circular arcs in the current configuration, and
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• All straight material lines parallel to the X2-axis in the reference configuration remain
straight and radial in the current configuration.

Also, let the motion of the body be described by means of orthonormal basis vectors EA

along the coinciding XA- and xi-axes of the figure.

R

reference configuration

current configuration

x1, X1

L

x2, X2

h

(a) Obtain an explicit expression for the coordinates (x1, x2) of an arbitrary point X at
time t as a function of its coordinates (X1, X2) in the reference configuration.

(b) Determine the components of the deformation gradient tensor F for any point of the
cross-section at time t.

(c) Determine the components of the right Cauchy-Green tensor C and the Lagrangian
strain tensor E at time t as a function of X.

(d) At the same time t, calculate the stretch λ of a material line element located in the
reference configuration on the centerline (that is, at X2 = 0) and pointing along the
direction of the unit vector M1, where

M1 = E1 .

(e) Repeat part (d) for an arbitrary material line element lying in the reference configuration
along the direction of the unit vector M2, where

M2 = E2 .

What can you conclude about the stretch of this material line element?

(f) Determine the components of the left Cauchy-Green tensor B and the Eulerian strain
tensor e at time t as a function of X.

(g) With reference to the polar decomposition theorem, obtain the rotation tensor R and
the stretch tensors U and V at time t.

3-19. Prove the polar decomposition theorem for a tensor F that satisfies detF > 0.
Hint: Start by observing thatC = FTF is necessarily positive-definite, then apply the spectral
representation theorem to C and calculate its square root.
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3-20. By direct appeal to the definitions in (2.53), show that the right and left Cauchy-Green
deformation tensors C and B have the same principal invariants.

3-21. Recall that any rotation tensor R can be represented by Rodrigues’ formula (3.129) and let
the components of a tensor Q be written with respect to a fixed orthonormal basis as

[Qij ] =







1√
3

1√
3

− 1√
3

− 1√
2

1√
2

0

1√
6

1√
6

√
2
3






.

(a) Verify that Q is proper orthogonal (that is, a rotation tensor).

(b) Determine the angle of rotation θ and the unit eigenvector p of (3.129) for Q.

3-22. Recall Rodrigues’ formula for a rotation tensor Q in (3.129) and define a skew-symmetric
tensor K as

K = r⊗ q− q⊗ r .

(a) Show that the axial vector of K coincides with the unit eigenvector p of the tensor Q.

(b) Verify that the alternative version of Rodrigues’ formula

Q = I+ sin θK+ (1− cos θ)K2

holds true.

3-23. Although it is possible to obtain closed-form expressions of the polar factors R and U (or V)
as functions of a given non-singular F, it is much simpler to deduce them numerically using
an efficient iterative scheme. In particular, it can be shown that the iteration

U(n+1) =
1

2
(U(n) +U−1

(n)C) , n = 0, 1, . . .

satisfies limn→∞U(n) = U, when starting with an initial guess U(0) = I. Subsequently, R
can be calculated from R = FU−1. Implement this iterative method in a computer program
and test it on the deformation gradients obtained in Exercise 3-8 (consider time t1, where
γ(t1) = 1) and Exercise 3-18 (take L = 10, h = 1, and X2 = 0.5).

3-24. Consider a body B of infinite domain, which at time t = 0 contains a spherical cavity of
radius A centered at a point O, as in the figure below. Without loss of generality, let the two
orthonormal bases EA and ei coincide and originate at O. At time t = 0 an explosion occurs
inside the cavity and produces a spherically symmetric motion of the form

x =
f(R, t)

R
X , (†)

where R =
√
XAXA is the magnitude of the position vector X for an arbitrary point P in

the reference configuration. Since it can be easily verified from (†) that the cavity remains
spherical at all times, let its radius be denoted by a(t).
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O
X

P

(a) Determine the deformation gradient tensor F.

(b) Find the velocity and acceleration fields in the referential description.

(c) If the motion is assumed isochoric, show that

f(R, t) = (R3 + a3 − A3)1/3 .

and represent the velocity and acceleration fields in the spatial description.

(d) Attempt to derive the expression of f in part (c) by a purely geometric argument, that
is, without making use of the results in parts (a) and (b).

3-25. A planar motion χ of a deformable body B is specified in component form by

x1 = χ1(XA, t) = αX1 − βX1X2

x2 = χ2(XA, t) = βX1 + αX2 (†)
x3 = χ3(XA, t) = X3 ,

where α, β, γ are functions of time only, such that α(0) = 1, β(0) = 0 and α > 0 for all time.
Also, all components in (†) are taken with respect to coincident fixed orthonormal bases EA

and ei. Let the body in the reference configuration (t = 0) occupy a unit cube as in the
figure below.

(a) Determine the components of the deformation gradient F.

(b) Place any additional restrictions on α and β, such that the motion be invertible for all
points and times.

(c) Find the stretch of a line element located at X1 = X2 = X3 = 0 along the direction
M = 1√

2
(E1 +E2).

(d) Find the total volume of the body in the current configuration.

3-26. Consider a deformable body which at time t = 0 occupies the unit cube depicted in the
figure below. The body is subjected to a motion whose deformation gradient is specified in
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2

3

1

x  ,X

x  ,X

x  ,X
1

2

3

O

component form relative to a fixed orthonormal basis as

[FiA] =





1 α 0
0 β 0
0 0 γ



 ,

where α, β and γ are functions of time only, such that βγ > 0 at all times and α(0) = 0,
β(0) = γ(0) = 1. Notice that the prescribed motion is spatially homogeneous (i.e., the
deformation gradient is independent of position in the reference configuration).

A
B

C

D

E

O

x1, X1

x2, X2

x3, X3

Determine the following geometric quantities in the current configuration, as functions of α,
β and γ:

(a) The length l of the material line element OE.

(b) The cosine of the angle θ between the material line elements OA and OC.

(c) The area a of the material face BCDE.

(d) The total volume v of the body.
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3-27. Let the motion χ of a deformable body be specified by

x1 = χ1(XA, t) = X1 ,

x2 = χ2(XA, t) = X2,

x3 = χ3(XA, t) = X3 + u(X1, X2) ,

where u(X1, X2, t) is twice-differentiable in (X1, X2) and u(X1, X2, 0) = 0. In the above,
all components are taken with reference to a fixed orthonormal basis EA and ei in the
reference and current configuration, respectively. The deformation resulting from this motion
is referred to as an indexshear!antiplaneanti-plane shear.

(a) Determine the components of the deformation gradient F and verify that the above
motion is isochoric (i.e., detF = 1).

(b) Determine the components of the right Cauchy-Green deformation tensor C and the
Lagrangian strain tensor E.

(c) Determine the stretches of material line elements which lie along the X1-, X2-, and
X3-axis in the reference configuration.

(d) Determine the rotations of the material line element of part (c).

3-28. Let a deformable body in the reference configuration occupy a region R0 comprised of two
subregions R1 and R2 separated from each other by a plane surface σ with unit normal E3,
as in the following figure.

(i) How do material line elements along E1 and E2 deform under the effect of the defor-
mation gradient F?

(ii) Assume the deformation gradient is constant in each subregion with values F1 and F2,
respectively. Also, assume that the motion χ(x, t) of the body is continuous in the
variable x throughout R0. Derive two algebraic conditions that need to be satisfied
by F = F1 and F = F2 stemming from the manner in which these tensors operate on
infinitesimal line elements which lie on the plane σ along the directions of the orthogonal
unit vectors E1 and E2 depicted in the figure.

R1 R2

σ

e3,E3

e1,E1

e2,E2
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(iii) Deduce that F1 and F2 must be related according to

F2 = F1 + g ⊗E3 ,

where g is any vector.

Hint: Resolve F1 and F2 on the coincident orthonormal bases (E1,E2,E3) and (e1, e2, e3),
and exploit the results of parts (i) and (ii).

3-29. Suppose that a homogeneous motion χ of a deformable body B is specified by

x1 = χ1(XA, t) = X1 + t2X3 ,

x2 = χ2(XA, t) = X2 − tX3 ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal basis EA and ei in the
reference and current configuration, respectively.

(a) Determine the components of the deformation gradient F and verify that the above
motion is isochoric (i.e., detF = 1).

(b) Determine the components of the velocity v in both the referential and spatial descrip-
tions. Is the motion steady?

(c) Determine the components of the spatial velocity gradient L, the rate of deformation D
and the vorticity W.

(d) Calculate the pathline for a particle which at time t = 0 occupies a point with position
vector X = E1 +E2 +E3. Sketch this pathline on the (x1, x2)-plane.

(e) Calculate the streamline that passes through x = e1 − e3 at time t = 1. Sketch this
streamline on the (x1, x2)-plane.

(f) Calculate the material derivative of ln ρ, where ρ is the mass density in the current
configuration of the body.

3-30. Consider a planar motion χ of a deformable body B, of the general form

x1 = X1 ,

x2 = χ2(X2, X3, t) , (†)
x3 = χ3(X2, X3, t) ,

where all components are taken with reference to a fixed orthonormal basis {e1, e2, e3}. Also,
recall Rodrigues’ formula (3.129) for the parametrization of a proper orthogonal tensor.

(a) Establish that for the planar motion as in (†), the components of the rotation tensor R
at a given point X and time t can be written as

[RiA] =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .
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(b) Recalling the symmetry of the right stretch U, show that

tan θ =
F32 − F23

F22 + F33
,

where FiA are the components of the deformation gradient F.

(c) Use the result of part (b) to obtain the components of the right stretch tensor U in the
form

[UAB] =
1

F





F 0 0
0 J + F 2

22 + F 2
32 F22F23 + F32F33

0 F22F23 + F32F33 J + F 2
23 + F 2

33



 ,

where J = detF and F =
√

(F22 + F33)2 + (F32 − F23)2.

3-31. Show that at any given time t, the deformation gradient F at any point X can be uniquely

decomposed into
F = VsphFdev ,

where Vsph corresponds to pure stretch of equal magnitude in all directions, while Fdev

induces volume-preserving (or deviatoric) deformation.

3-32. A generalized Lagrangian strain is defined as

E(m) =

{
1
m(Cm/2 − I) if m 6= 0
1
2 lnC if m = 0

,

where I is the identity tensor and m is a real number. In the above,

Cm/2 =
3∑

I=1

λmI MI ⊗MI

and

lnC =
3∑

I=1

(lnλ2I)MI ⊗MI ,

where λI , I = 1-3, are the principal stretches, while the vectors MI , I = 1-3, lie along the
associated principal directions and form an orthonormal basis in E3.

(a) Verify that E(2) coincides with the Lagrangian strain tensor E.

(b) Argue that E(−2) corresponds (in a certain sense that you should precisely identify) to
the Eulerian (Almansi) strain tensor e.

(c) Show that
lim
m→0

E(m) = E(0) .

The tensor E(0) is known as the Hencky strain.

3-33. Recall that the scalar triple product [a,b, c] = a · (b× c) of vectors a, b and c satisfies

a · (b× c) = det
[
[ai] , [bi] , [ci]

]
. (†)
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(a) Use (†) to show that

J =
1

6
ǫijk ǫABC xi,A xj,B xk,C , (‡)

where J = detF and ǫijk, ǫABC are the components of the permutation symbol.

(b) Use (‡) to deduce that
∂J

∂xi,A
= JXA,i (♯)

or, in direct notation,
∂J

∂F
= JF−T .

The tensor F∗ = JF−T is termed the adjugate of F.

(c) Use (♯) to show that

J̇ = Jvi,i = J divv .

3-34. Let the components of a velocity field v be specified with reference to an orthonormal basis
ei as

v1 = ax2x3 , v2 = −ax1x3 , v3 = bx3 , (†)
where a and b are constants.

(a) Determine the components of the velocity gradient L.

(b) Obtain from (a) the components of the rate of deformation tensor D and the vorticity
tensor W.

(c) Find the components of the axial vector w associated with the vorticity tensor obtained
in (b).

(d) What restrictions should be placed on a and b, so that the motion associated with the
velocity field (†) be (i) isochoric, or (ii) irrotational?

3-35. Consider a steady motion whose velocity has components

v1 = x2x3 , v2 = −x1x3 , v3 = 1 ,

relative to a fixed orthonormal basis {ei}.

(a) Verify that the motion is isochoric.

(b) Determine the components of the spatial velocity gradient tensor L.

(c) Determine the components of the acceleration vector a.

(d) Find the components of the rate-of-deformation tensor D and the vorticity tensor W.

(e) Use the result of part (d) to deduce the components of the vorticity vector w.

(f) Use the result of part (e) to find the equation of the vortex line that passes through the
origin of the coordinate system. Also, draw a sketch of this vortex line.
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3-36. (a) Show that
˙

B−1 = −(B−1L + LTB−1) ,

where B is the left Cauchy-Green strain tensor and L is the spatial velocity gradient
tensor.

(b) Use the result of part (a) to verify that

D = ė + LTe + eL ,

where e is the relative Eulerian (Almansi) strain tensor and D is the rate of deformation
tensor.

3-37. Consider two infinitesimal material line elements dX1 and dX2 in the reference configuration,
which are aligned with the unit vectors M and N, respectively.

(a) Show that

λMλN m · n = M ·CN ,

where λM , λN are the stretches of dX1 and dX2 in the current configuration, m, n
are the unit vectors aligned to the same two infinitesimal material line elements in the
current configuration, and C is the right Cauchy-Green deformation tensor.

(b) If θ is the angle between the unit vectors m and n, deduce the relation

(

λ̇M
λM

+
λ̇N
λN

)

cos θ − θ̇ sin θ = 2m ·Dn (no summation on M,N) ,

where D is the rate-of-deformation tensor.

(c) If the unit vectors m and n are aligned to the unit vectors e1 and e2 of the orthonormal
basis {ei}, argue that the expression in part (b) reduces to

−θ̇ = 2D12 .

Also, comment on the physical interpretation of the off-diagonal components of the
tensor D.

3-38. (a) Let dX = M dS be an infinitesimal material line element in the reference configuration
of a given body, and assume that it is mapped by the motion χ to a line element
dx = m ds in the current configuration, where both M and m are unit vectors. Show
that

ḋs = m ·Dm ds

and

ṁ = Lm − {m · Lm}m ,

where D is the rate of deformation tensor and L is the spatial velocity gradient tensor.

ME185



Exercises 107

(b) Let dA = N dA be an infinitesimal area element on a plane normal to the unit vector N
in the reference reference configuration of a given body, and assume that it is mapped
by the motion χ to an area element da = n da on a plane normal to the unit vector n
in the current configuration. Show that

ḋa = {trD − n ·Dn} da

and

ṅ = {n · Ln}n − LTn .

3-39. Let the velocity field of a continuum be given in spatial form as

v1 = x2x3, v2 = −x3x1, v3 = x1x2 .

(a) Show that the motion of the continuum is isochoric.

(b) Find the components of the spatial velocity gradient tensor L, as well as the components
of the rate of deformation tensor D and the vorticity tensor W.

(c) Determine the rate of change of the logarithmic stretch for a material line element which
in the current configuration lies in the direction of the unit vectorm = 1√

3
(e1 + e2 + e3).

(d) Determine the rate of change ṁ of the orientation for a material line element which in
the current configuration lies in the direction of the unit vector m defined in part (c).

3-40. Recall that the velocity gradient tensor L can be uniquely decomposed into the (symmetric)
rate-of-deformation tensor D and the (skew-symmetric) vorticity tensor W, such that

L = D + W .

(a) Show that

Dv =
1

2
grad (v · v) + Wv ,

where v is the velocity vector. Use the result of part (a) and the definition of the
material time derivative to establish the identity

a =
∂v

∂t
+

1

2
grad (v · v) + 2w × v ,

where a is the acceleration vector and w the vorticity vector (i.e., the axial vector
of W).

3-41. Recall that, according to the right polar decomposition, the deformation gradient tensor can
be written as

F = RU ,

where R is a proper orthogonal tensor and U is a symmetric positive-definite tensor.
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(a) Show that the spatial velocity gradient tensor can be expressed as

L = Ω + RU̇U−1RT , (†)

where Ω = ṘRT .

(b) Use (†) to obtain expressions for the rate of deformation tensor D and the vorticity
tensor W.

(c) Assume that at a given time t = t̄, the body passes through its reference configuration,
so that for any material point with position vector X in the reference configuration,
x = χ(X, t̄) = X. Show that

D(x, t̄) = U̇

and
W(x, t̄) = Ṙ .

3-42. Let v = ṽ(x, t) be the spatial velocity for a body B and recall that the acceleration a may
be expressed in spatial form as

a =
∂ṽ

∂t
+ Lv .

(a) Use the preceding expression for the acceleration a to show that

div a =
∂

∂t
(divv) + divLT · v + LT · L ,

where L is the spatial velocity gradient tensor.

(b) Show that

˙divv =
∂

∂t
(divv) + divLT · v ,

where ˙divv denotes the material time derivative of divv.

(c) Use the results of parts (a) and (b) to conclude that

div a = ˙divv + LT · L .

(d) Conclude that the expression in part (c) may be alternatively written as

div a = ˙divv +D ·D−W ·W ,

where D is the rate-of-deformation tensor and W is the vorticity tensor.

3-43. Let the spatial acceleration gradient tensor grada be written in component form as

grad a =
∂ai
∂xj

ei ⊗ ej ,

in terms of the components ai of the acceleration vector.
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(a) Show that
F̈ = (grada)F ,

where F is the deformation gradient tensor.

(b) Use the result of part (a) to show that

grada = L̇+ L2 ,

where L is the spatial velocity gradient tensor.

(c) Show that the symmetric and skew-symmetric parts of grada can be written as

sym(grada) = Ḋ+D2 +W2

skw(grada) = Ẇ +DW +WD ,

respectively, where D is the rate-of-deformation tensor D and W is the vorticity ten-
sor W.

3-44. Consider motions χ and χ
+ which differ by a superposed rigid-body motion, so that for any

particle that occupies point X in the common reference configuration,

x = χ(X, t)

and
x+ = χ

+(X, t)

at all times t. Then, it has been shown that

x+ = Q(t)x + c(t) ,

where Q(t) is a proper orthogonal tensor and c(t) is a vector in E3.

(a) Recall that an infinitesimal material line element dX = M dS in the reference configura-
tion is mapped by the motion χ to a line element dx = m ds in the current configuration.
Show that under a superposed rigid-body motion

m+ = Qm,

and
ds+ = ds .

(b) How do the following tensor quantities transform under superposed rigid motions? In-
dicate whether or not each quantity is objective.
(i) C2, (ii) B2, (iii) Ḟ, (iv) Ċ, (v) Ḃ.

3-45. Show that, under superposed rigid motions, the ‘div’ and ‘curl’ operators “transform” as

div+ a = div (QTa) , curl+ a = Q curl (QTa) ,

for any vector a in E3.
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Chapter 4

Physical Principles

4.1 The Reynolds transport theorem

Let P ⊂ R be an open and bounded region in E3 with smooth boundary ∂P and assume

that the same particles that occupy this region at time t also occupy an open and bounded

region P0 ⊂ R0 with smooth boundary ∂P0 at a fixed reference time t0, see Figure 4.1. In

χ

P ∂PP0 ∂P0

R
∂RR0

∂R0

Figure 4.1. A region P with boundary ∂P and its image P0 with boundary ∂P0 in the reference

configuration.

addition, let a real-valued field φ be defined by a referential function φ̂ : P0 × R 7→ R or a

spatial function φ̃ : P × R 7→ R, that is, φ = φ̂(X, t) = φ̃(x, t). Both φ̂ and φ̃ are assumed

continuously differentiable in both of their arguments. In the forthcoming discussion of

balance laws, it is important to be able to manipulate expressions of the form

d

dt

∫

P
φ̃ dv , (4.1)

namely, material time derivatives of volume integrals defined over some time-dependent,

open, and bounded subset P of the current configuration.
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Example 4.1.1: Rate of change of volume

Consider the integral in (4.1) for φ = 1. Here,
d

dt

∫

P
dv =

d

dt
vol{(P)}, which is the rate of change at time t

of the total volume of the region occupied by the material particles that occupy P at time t.

Before evaluating (4.1), it is important to observe that the time differentiation and spa-

tial integration operations cannot be directly interchanged, because the region P over which

the integral is evaluated is itself a function of time. To circumvent this difficulty one may

proceed as follows: first, transform (“pull-back”) the integral to the (fixed) reference configu-

ration with the aid of (3.75); next, interchange the differentiation and integration operations

and evaluate the time derivative of the integrand; and, finally, transform (“push-forward”)

the integral back to the current configuration again with the aid of (3.75). Adopting this

approach and also recalling (3.143) leads to

d

dt

∫

P
φ̃ dv =

d

dt

∫

P0

φ̂J dV

=

∫

P0

d

dt
(φ̂J) dV

=

∫

P0

(

φ̇J + φ̂J̇
)

dV

=

∫

P0

[

φ̇J + φ̂(J div v)
]

dV

=

∫

P0

(

φ̇+ φ̂ div v
)

J dV

=

∫

P

(

φ̇+ φ̃ div v
)

dv . (4.2)

This result is known as the Reynolds1 transport theorem. It is easy to see that, in addition

to real-valued fields φ, the theorem applies also to vector and tensor fields without any

modifications.

A slightly different derivation of the Reynolds transport theorem is possible, which ac-

counts directly for the dependence of P on time and does not rely on the existence of a

1Osborne Reynolds (1842–1912) was a British mechanician.
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reference configuration. Specifically, appealing only to (3.142), one may write

d

dt

∫

P
φ̃ dv =

∫

P

(

φ̇ dv + φ̃ ḋv
)

=

∫

P

[

φ̇ dv + φ̃(div v dv)
]

=

∫

P

(

φ̇+ φ̃ div v
)

dv . (4.3)

To interpret the Reynolds transport theorem, note that the left-hand side of (4.2) is the

rate of change of the integral of φ over the region P , when following the set of particles that

happen to occupy P at time t. The right-hand side of (4.2) consists of the sum of two terms:

The first one is due to the rate of change of φ for all particles that happen to occupy the

region P at time t; the second one is due to the rate of change of the volume occupied by

the same particles as they travel with velocity v.

The Reynolds transport theorem can be restated in a number of equivalent forms. One

such form is obtained from (4.2) by appealing to the definition of the material time derivative

in (3.19) and the divergence theorem (2.99) as

d

dt

∫

P
φ̃ dv =

∫

P

(

φ̇+ φ div v
)

dv

=

∫

P

(

∂φ̃

∂t
+

∂φ̃

∂x
· v + φ̃ div v

)

dv

=

∫

P

[

∂φ̃

∂t
+ div(φ̃v)

]

dv

=

∫

P

∂φ̃

∂t
dv +

∫

∂P
φ̃v · n da . (4.4)

An alternative interpretation of the theorem is now in order. Here, the right-hand side

of (4.4) consists, again, of the sum of two terms: The first term is the rate of change of φ

at time t for all points that comprise the region P at that time; the second term is the flux

of φ as particles exit P across ∂P with normal velocity v · n.
For the special case where P is a fixed region in space, say P = P̄ , it follows that

∫

P̄

∂φ̃

∂t
dv =

∂

∂t

∫

P̄
φ̃ dv. Indeed, the preceding relation holds true since integration over P̄

is is now uncoupled from partial-time differentiation. Therefore, starting from (4.4), the

Reynolds transport theorem may be expressed over a fixed region P̄ as

d

dt

∫

P̄
φ̃ dv =

∂

∂t

∫

P̄
φ̃ dv +

∫

∂P̄
φ̃v · n da . (4.5)
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Now, the left hand side of (4.5) is the rate of change of the integral of φ over all the particles

located in the fixed region P̄ at time t. In addition, the first term on the right-hand side

of (4.5) is now the rate of change of the integral of φ over the region P̄ due to its explicit

dependence on time, while the second term is the flux of φ as particles exit P̄ across the

fixed boundary ∂P̄ with normal velocity v · n.

Example 4.1.2: Area integral representing volume change
Consider again the special case φ̃(x, t) = 1, which corresponds to the transport of volume. Here,

d

dt

∫

P
dv =

∫

P
div v dv =

∫

∂P
v · n da .

This means that the rate of change of the volume occupied by the same material particles equals the boundary
integral of the normal component of the velocity v ·n of ∂P, that is, the rate at which the volume of P changes
as the particles exit across the boundary ∂P̄ of the fixed region P̄ which equals to P at time t.

Note that in the preceding derivations explicit reference was made to the specific function

(either φ̂ or φ̃) entering each volume integral. Henceforth, such reference will only be made

when deemed necessary for clarity.

4.2 The localization theorem

Another result with important implications in the study of balance laws is presented here by

way of background. Let φ̃ : R× R → R be a function such that φ = φ̃(x, t), where R ⊂ E3.

Also, let φ̃ be continuous in the space variable x. Then, assume that
∫

P
φ̃ dv = 0 , (4.6)

for all P ⊂ R at a given time t. The localization theorem states that this is true if, and only

if, φ̃ = 0 everywhere in R at time t.

To prove this result, first note that the “if” portion of the theorem is straightforward,

since, when φ̃ = 0 in R, then (4.6) holds trivially true for any P ∈ R. To prove the converse,

note that continuity of φ̃ in the spatial argument x at a point x0 ∈ R means that for a given

time t and every ε > 0, there is a δ = δ(ε) > 0, such that

|φ̃(x, t)− φ̃(x0, t)| < ε , (4.7)

provided that

|x− x0| < δ(ε) . (4.8)
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Now proceed by contradiction and assume that there exists a point x0 ∈ R, such that, at a

given time t and without loss of generality, φ̃(x0, t) = φ0 > 0. Then, invoking continuity of

φ̃ in x, there exists a δ = δ(
φ0

2
) > 0, such that

|φ̃(x, t)− φ̃(x0, t)| = |φ̃(x, t)− φ0| <
φ0

2
, (4.9)

whenever

|x− x0| < δ(
φ0

2
) . (4.10)

Next, define the region Pδ that consists of all points of R for which |x − x0| < δ(
φ0

2
), see

R

Pδx0

Figure 4.2. The domain R with a spherical subdomain Pδ centered at x0.

Figure 4.2. This is a sphere of radius δ in E3 with volume vol(Pδ) =

∫

Pδ

dv > 0. It follows

from (4.9)2 that φ̃(x, t) >
φ0

2
everywhere in Pδ. This, in turn, implies that

∫

Pδ

φ̃ dv >

∫

Pδ

φ0

2
dv =

φ0

2
vol(Pδ) > 0 , (4.11)

which contradicts the assumption in (4.6). Therefore, the localization theorem holds true.

The localization theorem can be also proved with equal ease for vector- and tensor-valued

functions which satisfy the aforementioned properties of the real-valued function φ̃.

4.3 Mass and mass density

Consider a body B and take any part S ⊆ B, as in Figure 3.1. Define a set function

m : S 7→ R with the following properties:

(i) m(S ) ≥ 0, for all S ⊆ B (that is, m non-negative),
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(ii) m(∅) = 0,

(iii) m(∪∞
i=1Si) =

∞∑

i=1

m(Si), where Si ⊂ B, i = 1, 2, . . . , and Si ∩ Sj = ∅, if i 6= j (that

is, m countably additive2).

A function m with the preceding properties is called a measure on B. Assume here that

there exists such a measure m and refer to m(B) as the mass of body B and m(S ) as the

mass of the part S of B.

In continuum mechanics, it is important to represent mass-dependent quantities, such as

linear and angular momentum, in terms of volume integrals. To enable this representation,

start with the body B, which occupies a region R ⊂ E3 at time t and consider also a part S

of the body, which occupies a region P ⊆ R at the same time. Under certain technical

conditions on m, it can be established that there exists a unique function ρ = ρ(x, t), such

that, for any function f = f̌(P, t) = f̃(x, t),

∫

B

f̌ dm =

∫

R
f̃ρ dv (4.12)

and ∫

S

f̌ dm =

∫

P
f̃ρ dv , (4.13)

where dm may be thought of, somewhat loosely, as the differential mass associated with a

material point P in B. The function ρ(x, t) > 0 is termed the mass density.3 The mass

density of a particle P occupying point x in the current configuration may be thought of as

being derived by a limiting process as

ρ(x, t) = lim
δ→0

m(Sδ)

vol(Pδ)
, (4.14)

where Pδ ⊂ E3 denotes a sphere of radius δ > 0 centered at x and Sδ the part of the body

that occupies Pδ at time t, see Figure 4.3.

As a special case, one may consider the function f = 1, so that (4.12) and (4.13) reduce

to ∫

B

dm =

∫

R
ρ dv = m(B) (4.15)

2A physical quantity that is additive for non-intersecting parts of the body is also called extensive.
3The existence of ρ is a direct consequence of a classical result in measure theory, known as the Radon-

Nikodym theorem.
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Pδ

R

Sδ

B

x
δ

Figure 4.3. A limiting process used to define the mass density ρ at a point x in the current

configuration.

and ∫

S

dm =

∫

P
ρ dv = m(S ) . (4.16)

An analogous definition of mass density can be furnished in the reference configuration,

where there is a unique function ρ0 = ρ0(X), such that for any function f = f̌(P, t) = f̂(X, t),

∫

B

f̌ dm =

∫

R0

f̂ρ0 dV (4.17)

and ∫

S

f̌ dm =

∫

P0

f̂ρ0 dV . (4.18)

Here, the mass density ρ0(X) in the reference configuration may be again defined by a

limiting process, such that at a given point X,

ρ0(X) = lim
δ→0

m(Sδ)

vol(P0,δ)
, (4.19)

where P0,δ ⊂ E3 denotes a sphere of radius δ > 0 centered at X and Sδ the part of the body

that occupies P0,δ at time t0. Also, as in the spatial case, one may write

∫

B

dm =

∫

R0

ρ0 dV = m(B) (4.20)

and ∫

S

dm =

∫

P0

ρ0 dV = m(S ) . (4.21)

The mass density ρ0 should not be confused with the referential description of the mass

density ρ at time t, that is, ρ = ρ̂(X, t) 6= ρ0(X). Indeed, ρ0 it the mass density associated

with a material particle that occupies the position X at time t0.

ME185



The principle of mass conservation 117

4.4 The principle of mass conservation

The principle of mass conservation (also referred to as principle of balance of mass) states

that the mass of any material part of the body remains constant at all times. An implicit

assumption in stating this principle is that there is no exchange of mass between the body

and its surrounding matter, as would be the case, for instance, when a body grows or shrinks

by adding or losing mass, respectively. In such cases, the principle of mass conservation is

still applicable to the system of mass-exchanging bodies, rather than to each body separately.

For any material part S of a body, one may express the principle of mass conservation

as
d

dt
m(S ) = 0 (4.22)

or, upon recalling (4.16),
d

dt

∫

P
ρ dv = 0 . (4.23)

The preceding equation represents an integral form of the principle of mass conservation in

the spatial description. Using the Reynolds transport theorem in the form (4.2), the above

equation may be also written as
∫

P
(ρ̇+ ρ div v) dv = 0 . (4.24)

Upon invoking (3.19), this may be readily rewritten as
∫

P

(
∂ρ

∂t
+

∂ρ

∂x
· v ++ρ div v

)

dv = 0 (4.25)

or, alternatively,
∫

P

(
∂ρ

∂t
+ div ρv

)

dv = 0 . (4.26)

By appealing to the divergence theorem, (4.26) may be equivalently expressed as
∫

P

∂ρ

∂t
dv +

∫

∂P

ρv · n da = 0 . (4.27)

The first term on the right-hand side of (4.27) is the rate of change of mass inside P due to

the change in the density ρ, while the second term is the rate of change of mass in P due to

the flux of mass through the boundary ∂P , see Figure 4.4.

Assuming that the integrand in (4.24) is continuous and recalling that S (hence, also P)

is arbitrary, it follows from the localization theorem that

ρ̇+ ρ div v = 0 . (4.28)
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n
v

P

∂P

Figure 4.4. Mass conservation in a domain P with boundary ∂P .

Equation (4.28) constitutes the local form of the principle of mass conservation in the spatial

description. An alternative local statement may be obtained by applying the localization

theorem to (4.26), in the form
∂ρ

∂t
+ div (ρv) = 0 . (4.29)

This is often referred to as the mass continuity equation, on account of the earlier interpre-

tation of its integral counterpart (4.27).

An alternative referential form of the mass conservation principle may be obtained by

recalling equations (4.16) and (4.21), from which it follows that

m(S ) =

∫

P
ρ dv =

∫

P0

ρ0 dV . (4.30)

Recalling also (3.75), one concludes that

∫

P0

ρJ dV =

∫

P0

ρ0 dV . (4.31)

This is an integral form of the principle of mass conservation in the referential description.

From it, one finds that
∫

P0

(ρJ − ρ0) dV = 0 . (4.32)

Taking into account the arbitrariness of P0, the localization theorem may be invoked again

to yield a local form of mass conservation in referential description as

ρ0 = ρJ . (4.33)

The positivity of the Jacobian J asserted in Section 3.2 guarantees that the mass density ρ

in (4.33) remains always positive, given a positive density ρ0 in the reference configuration.

ME185



The principles of linear and angular momentum balance 119

Note that the local referential statement of mass balance (4.33) may be directly derived

from its spatial counterpart (4.28). Indeed, recalling (3.143), the spatial mass balance state-

ment (4.28) may be written as
ρ̇

ρ
= − J̇

J
, (4.34)

which may be integrated to (4.33) upon observing that ρ = ρ0 in the reference configura-

tion.

Example 4.4.1: Mass conservation in volume-preserving flow

In a volume-preserving flow of a material with uniform density, conservation of mass reduces to
∂ρ

∂t
= 0,

since (3.143) necessarily implies that divv = 0. Hence, recalling (4.27), one may write

d

dt

∫

P
ρ dv =

∫

P

∂ρ

∂t
dv +

∫

∂P
ρv · n da =

∫

∂P
ρv · n da = 0 .

This implies that in a volume-preserving flow the net flux of mass across the boundary ∂P is zero.

4.5 The principles of linear and angular momentum

balance

Once mass conservation is established, the principles of linear and angular momentum are

postulated to describe the motion of continua. These two principles originate in the pioneer-

ing work of Newton and Euler.

By way of introduction, it is instructive to briefly revisit Newton’s three laws of motion, as

postulated for particles in 1687. The first law states that a particle stays at rest or continues

to travel at constant velocity unless an external force acts on it; the second law states that

the total external force on a particle is proportional to the rate of change of the momentum

of the particle; and, the third law states that every action (understood as a force acting

on a particle) has an equal and opposite reaction. As Euler recognized, Newton’s three

laws of motion, while sufficient for the analysis of single particles or systems of particles,

are not suitable for the study of rigid and deformable continua. Rather, he postulated a

linear momentum balance principle (akin to Newton’s second law) and a separate angular

momentum balance principle (which does not exist as such in Newton’s theory). The latter

can be easily motivated from the analysis of systems of particles.

To formulate Euler’s two balance laws, first define the linear momentum of the part of

the body that occupies the infinitesimal volume element dv at time t as dmv, where dm
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is the mass of dv. Also, define the angular momentum of the same part relative to the

origin of a fixed basis {ei} as x × (dmv), where x is the position vector associated with

the infinitesimal volume element, see Figure 4.5. Similarly, define the linear and angular

momenta of the part S which occupies a region P at time t as
∫

S
v dm and

∫

S
x × v dm,

respectively. Clearly, the angular momentum depends on the choice of the origin from which

one draws the position vector x.

O

x

v

dv

Figure 4.5. Angular momentum of an infinitesimal volume element dv.

Next, admit the existence of two types of external forces acting on the body at any time t.

These are: (a) a body force per unit mass (e.g., gravitational, magnetic) b = b(x, t) which

acts on the particles that comprise the domain of the body, and (b) a contact force per unit

area t = t(x, t;n) = t(n)(x, t), which acts on the particles that lie on boundary surfaces

and depend on the orientation of the surface on which they act through the outward unit

normal n to the surface,4 see Figure 4.6. The force t(n) is alternatively referred to as the

stress vector or the traction vector. The dependence of the contact force on orientation will

be further elaborated upon in the next section.

It is important to emphasize here that the external forces are a central conceptual con-

struct in continuum mechanics, by which one describes the interactions of the body with

its surrounding environment. These may be long-range interactions realized throughout the

domain (in the case of the body force) or short-range interactions effected only on the bound-

ary by physical contact (in the case of the contact force). The preceding assumption on the

nature of the external forces constitutes a mild simplification. In a more general theory, one

would have also admitted the existence of body moment per unit mass and a contact moment

per unit area. However, these so-called distributed couples (tantamount to the classical force

couples) are ignored here.

4The notation t = t(x, t;n) = t(n)(x, t) is, in fact, specifically intended to emphasize the dependence of t

on n.
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R

∂R

Figure 4.6. External forces on body occupying regionR with boundary ∂R (body force in green,

contact force in red).

The principle of linear momentum balance states that the rate of change of linear mo-

mentum for any part S of the body that occupies the region P with boundary ∂P at time t

equals the total external force acting on this part. In mathematical terms, this means that

d

dt

∫

S

v dm =

∫

S

b dm+

∫

∂P
t(n) da (4.35)

or, equivalently, in view of (4.13),

d

dt

∫

P
ρv dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.36)

Using the Reynolds transport theorem in the form (4.2) and also invoking conservation of

mass in the form (4.28), the left-hand side of the equation can be written as

d

dt

∫

P
ρv dv =

∫

P

[
d

dt
(ρv) + ρv div v

]

dv

=

∫

P
[(ρ̇v + ρv̇) + ρv div v] dv

=

∫

P
[(ρ̇+ ρ div v)v + ρv̇] dv

=

∫

P
ρa dv . (4.37)

An alternative (and simpler) derivation of this result takes advantage of mass conservation

to interchange material time differentiation and integration for the rate of change of linear

momentum in (4.35), such that

d

dt

∫

S

v dm =

∫

S

v̇ dm =

∫

P
ρa dv . (4.38)
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Either way, the principle of linear momentum balance in (4.36) can be now expressed as
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.39)

It is clear from (4.39) that this principle generalizes Newton’s second law where the left-

hand side is the mass-weighted acceleration of the part of the body that occupies P and the

right-hand side is the total external force acting on the same part.

The principle of angular momentum balance states that the rate of change of angular

momentum for any part S of the body that occupies the region P with boundary ∂P at

time t equals the moment of all external forces acting on this part. Again, this principle can

be expressed mathematically as

d

dt

∫

S

x× v dm =

∫

S

x× b dm+

∫

∂P
x× t(n) da (4.40)

or, again, by way of (4.13),

d

dt

∫

P
x× ρv dv =

∫

P
x× ρb dv +

∫

∂P
x× t(n) da . (4.41)

Invoking (4.2) and (4.28), one may easily rewrite the term on the left-hand side of (4.41) as

d

dt

∫

P
x× ρv dv =

∫

P

[
d

dt
(x× ρv) + (x× ρv) div v

]

dv

=

∫

P
[(ẋ× ρv + x× ρ̇v + x× ρv̇) + (x× ρv div v)] dv

=

∫

P
[x× (ρ̇+ ρ div v)v + x× ρa] dv

=

∫

P
x× ρa dv . (4.42)

Again, one may alternatively write

d

dt

∫

S

x× v dm =

∫

S

˙x× v dm =

∫

S

x× v̇ dm =

∫

P
ρx× a dv . (4.43)

As a result of either of the above two equations, the principle of angular momentum balance

may be also written as
∫

P
x× ρa dv =

∫

P
x× ρb dv +

∫

∂P
x× t(n) da . (4.44)

The preceding two balance laws are also referred to as Euler’s laws. They are termed

“balance” laws because they postulate that there exists a balance between external forces

ME185



Stress vector and stress tensor 123

(and their moments) and the rate of change of linear (and angular) momentum. Euler’s laws

are independent axioms in continuum mechanics.

In the special case where b = 0 in P and t(n) = 0 on ∂P , (4.36) and (4.41) readily imply

that the linear and the angular momentum are conserved quantities in P . Hence, these

balance laws reduce to corresponding conservation laws. Another commonly encountered

special case is when the acceleration a vanishes identically or is negligible in comparison to

the external force and moment terms. In this case, (4.36) and (4.41) imply that the sum

of all external forces and the sum of all external moments vanish, which gives rise to the

classical

Equilibrium affords a simple thought experiment which verifies that angular momentum

balance is a separate postulate from linear momentum balance. Specifically, consider a

sequence of square bodies loaded with point forces at the vertices and progressively shrinking

to a point, as in Figure 4.7. While each body is clearly in force equilibrium, the forces result

in non-zero moment that would induce spinning of the body. This moment vanishes when

the body collapses to a point, in which case the body (now particle) satisfies both force and

moment equilibrium. equilibrium equations.

F F

FF

Figure 4.7. A sequence of shrinking bodies under equilibrated point forces.

4.6 Stress vector and stress tensor

As in the case of mass balance, it is desirable to obtain local forms of linear and angular

momentum balance. Recalling the corresponding integral statements (4.39) and (4.44), it

is clear that the acceleration and the body force terms are already in the form of volume

integrals. Therefore, in order to apply the localization theorem, it is essential that the

contact form terms (presently written as surface integrals) be transformed into equivalent

volume integral form.
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P1P1 P2P2

∂P ∂P ′ ∂P ′′
σ

σ
σ

n1 = n n2

Figure 4.8. Setting for the derivation of Cauchy’s lemma.

Preliminary to deriving the local forms of linear and angular momentum balance, consider

some properties of the traction vector t(n). In particular, take an arbitrary region P ⊂ R
and partition it into two mutually disjoint subregions P1 and P2 separated by an arbitrarily

chosen smooth surface σ, namely P = P1∪P2 and P1∩P2 = ∅, see Figure 4.8. Also, note that
the boundaries ∂P1 and ∂P2 of P1 and P2, respectively, can be expressed as ∂P1 = ∂P ′ ∪ σ

and ∂P2 = ∂P ′′ ∪ σ, while also ∂P = ∂P ′ ∪ ∂P ′′. Now, enforce linear momentum balance

separately for P1 and P2 to find, according to (4.39), that
∫

P1

ρa dv =

∫

P1

ρb dv +

∫

∂P1

t(n) da (4.45)

and ∫

P2

ρa dv =

∫

P2

ρb dv +

∫

∂P2

t(n) da . (4.46)

Next, add the two equations together to find that
∫

P1∪P2

ρa dv =

∫

P1∪P2

ρb dv +

∫

∂P1∪∂P2

t(n) da (4.47)

or, equivalently, ∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P1∪∂P2

t(n) da . (4.48)

In addition, enforce linear momentum balance in the entire domain P , the union of P1 and

P2, to conclude, based again on (4.39), that
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.49)

Subtracting (4.49) from (4.48) leads to
∫

∂P1∪∂P2

t(n) da =

∫

∂P
t(n) da . (4.50)
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Recalling the decompositions of ∂P1, ∂P2, and ∂P , the preceding equation may be also

expressed as ∫

∂P ′∪σ
t(n) da+

∫

∂P ′′∪σ
t(n) da =

∫

∂P ′∪P ′′

t(n) da (4.51)

or, upon rearranging the integrals on the left-hand side,
∫

∂P ′∪∂P ′′

t(n) da+

∫

σ

t(n1) da+

∫

σ

t(n2) da =

∫

∂P ′∪P ′′

t(n) da . (4.52)

It follows that ∫

σ

t(n1) da+

∫

σ

t(n2) da = 0 , (4.53)

which can be also written as
∫

σ

(t(n) + t(−n)) da = 0 . (4.54)

Since σ is an arbitrary surface, upon assuming that t depends continuously on n and x

along σ, the localization theorem yields the condition t(n) + t(−n) = 0 or, in expanded form,

t(x, t;n) = −t(x, t;−n) . (4.55)

This result is called Cauchy’s lemma on t(n). It states that the contact forces acting at x

on opposite sides of the same smooth surface are equal and opposite, see Figure 4.9. It is

important to recognize here that in continuum mechanics Cauchy’s lemma is not an axiom.

Rather, it is derivable from the principle of linear momentum balance, as shown above. This

is in contrast to particle mechanics, where the corresponding action-reaction condition on

contact forces is admitted axiomatically in the form of Newton’s third law.

n −n

t(n)

t(−n)

∂P

∂P

x

x

Figure 4.9. Tractions at point x on opposite sides of a surface ∂P (surface is depicted twice

for clarity).

To define the stress tensor at some point x and time t, consider the following problem,

originally conceived by Cauchy: Take a tetrahedral region P ⊂ R (the Cauchy tetrahedron),
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such that, without any loss of generality, three of its edges are parallel to the axes of the

basis {ei} and meet at x, as in Figure 4.10. Let σi be the face with unit outward normal −ei,

and σ the (inclined) face with outward unit normal n. Also, denote A the area of σ0, so that

the area vector nA can be resolved as

nA = (niei)A = Aniei = Aiei , (4.56)

where Ai = Ani is the area of the face σi (and also equal to the area of the projection of

the surface σ on the plane with normal ei). In addition, the volume of the tetrahedron is

V =
1

3
Ah, where h is the distance of x from the face σ.

3

2 1

R
e1

e2

e3
x

Figure 4.10. The Cauchy tetrahedron

Preliminary to applying balance of linear momentum to the tetrahedral region P , note

that the surface integral of the contact force may be expanded to
∫

∂P
t(n) da =

∫

σ0

t(n) da +

∫

σ1

t(−e1) da+

∫

σ2

t(−e2) da+

∫

σ3

t(−e3) da . (4.57)

Upon invoking Cauchy’s lemma in the form of (4.55), the preceding integral becomes
∫

∂P
t(n) da =

∫

σ0

t(n) da−−
∫

σ1

t(e1) da−
∫

σ2

t(e2) da−
∫

σ3

t(e3) da . (4.58)

Therefore, in view of (4.58), the balance of linear momentum (4.39) can be expressed as
∫

P
ρ(a− b) dv =

∫

σ0

t(n) da−
∫

σ1

t(e1) da−
∫

σ2

t(e2) da−
∫

σ3

t(e3) da . (4.59)

Assuming that ρ, a, and b are bounded, which is physically reasonable, one may obtain

an upper-bound estimate for the magnitude of the domain integral on the left-hand side

of (4.59) as 5

∣
∣
∣
∣

∫

P
ρ(a− b) dv

∣
∣
∣
∣
≤
∫

P
|ρ(a− b)| dv =

∫

P
K(x, t) dv = K∗V = K∗1

3
Ah , (4.60)

5The inequality in (4.59) is due to the property
∣
∣
∫

P f dv
∣
∣ ≤

∫

P |f | dv for any integrable function f in P.
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where K(x, t) = |ρ(a−b)| and K∗ = K(x∗, t), with x∗ being some interior point of P .6 The

preceding derivation makes use of the mean-value theorem for integrals.7 Assuming that t(ei)

are continuous in x, apply the mean value theorem for integrals component-wise to get
∫

σi

t(ei) da = t∗iAi (no summation on i) , (4.61)

so that summing up all three like equations

3∑

i=1

∫

σi

t(ei) da = t∗iAi = t∗iAni . (4.62)

Likewise, for the inclined face the mean-value theorem for integrals yields
∫

σ

t(n) da = t∗(n)A . (4.63)

Note that the traction vectors t∗i and t∗(n) are generally composed of coordinates chosen from

different interior points of σi and σ. Recalling from (4.59) and (4.60) that
∣
∣
∣
∣
∣

∫

σ

t(n) da−
3∑

i=1

∫

σi

t(ei) da

∣
∣
∣
∣
∣
≤ 1

3
K∗Ah , (4.64)

write, with the aid of (4.62) and (4.63),
∣
∣
∣
∣
∣

∫

σ

t(n) da−
3∑

i=1

∫

σi

t(ei) da

∣
∣
∣
∣
∣
=
∣
∣t∗(n)A− t∗iAni

∣
∣ = A

∣
∣t∗(n) − t∗ini

∣
∣ ≤ 1

3
K∗Ah , (4.65)

which simplifies to

|t∗(n) − t∗ini| ≤ 1

3
K∗h . (4.66)

Now, upon applying the preceding analysis to a sequence of geometrically similar tetrahedra

anchored at x and with heights h1 > h2 > . . ., where limi→∞ hi = 0, one finds that

|t(n) − tini| ≤ 0 , (4.67)

where, obviously, all stress vectors are evaluated exactly at x, hence the superscript ‘∗’ is
dropped. It follows from (4.67) that at point x

t(n) = tini . (4.68)

6The inequality in (4.59) is due to the property
∣
∣
∫

P f dv
∣
∣ ≤

∫

P |f | dv for any integrable function f in P.
7The mean-value theorem for integrals states that if P has positive volume (vol(P) > 0) and is closed,

bounded and connected, and if f is continuous in E3, then there exists a point x∗ ∈ P for which

∫

P
f(x) dv =

f(x∗) vol(P).
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Equation (4.68) reveals that the traction t(n) is the relative surface area-weighted sum (rather

than the straight sum) of the tractions on the lateral surfaces of the infinitesimal tetrahedron.

The Cauchy tetrahedron argument is a brilliant example of asymptotic analysis, in which

it is essentially recognized that the two volume integrals in (4.39) scale with length-cubed,

while the area integral scales with length-squared. Therefore, it is possible to neglect all volu-

metric effects as the tetrahedron shrinks to a point, thereby deriving the local relation (4.68)

based only on the surface contributions.

In view of (4.68), one may write

t(n) = tini = ti(ei · n) = (ti ⊗ ei)n = Tn , (4.69)

where T ∈ L(TxR× TxR), defined as

T = ti ⊗ ei , (4.70)

is the Cauchy stress tensor. The existence of a unique stress tensor T at any point x and

time t that relates the stress vector t(n) at x to the unit normal n of the plane on which

it acts according to t(n) = Tn is known as Cauchy’s stress theorem. From its definition

in (4.70), it is clear that the Cauchy stress tensor T, unlike the stress vector t(n), does not

depend on the normal n. Therefore, (4.69) also implies that t(n) depends linearly on the

normal n.

Upon expressing T in component form as T = Tkiek ⊗ ei, it follows readily from (4.70)

that

ti = Tkiek = Tei. (4.71)

Conversely, in view of (4.71), it is immediately seen that

tj · ei = Tkjek · ei = Tij . (4.72)

Return now to the integral statement of linear momentum balance in the form (4.36),

and, after taking into account (4.69), apply the divergence theorem to the boundary integral

term. This leads to
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da

=

∫

P
ρb dv +

∫

∂P
Tn da

=

∫

P
ρb dv +

∫

P
divT dv . (4.73)
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It follows from the preceding equation that the condition

∫

P
(ρa− ρb− divT) dv = 0 (4.74)

holds for an arbitrary region P , which, with the aid of the localization theorem leads to a

local form of linear momentum balance in the form8

divT+ ρb = ρa . (4.75)

An alternative statement of linear momentum balance can be obtained by noting from (4.68)

that
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da

=

∫

P
ρb dv +

∫

∂P
tini da

=

∫

P
ρb dv +

∫

P
ti,i dv , (4.76)

where use is made, again, of the divergence theorem. Appealing, once more, to the localiza-

tion theorem, this leads to

ti,i + ρb = ρa . (4.77)

Turning attention next to the balance of angular momentum, start by examining the

boundary integral term in (4.44). Using (4.68) and the divergence theorem, this integral can

be written as
∫

∂P
x× t(n) da =

∫

∂P
x× tini da =

∫

P
(x× ti),i dv =

∫

P
(ei × ti + x× ti,i) dv , (4.78)

since, on account of (3.8)2, xi = ei. Substituting the preceding equation into (4.44) yields

∫

P
x× ρa dv =

∫

P
x× ρb dv +

∫

P
(ei × ti + x× ti,i) dv (4.79)

or, upon rearranging the terms,

∫

P
[x× (ρa− ρb− ti,i) + ei × ti] dv = 0 . (4.80)

8Some authors choose to define the Cauchy stress as T = ei⊗ti and the divergence operator according to

divT · c = div (Tc), for any constant vector c, instead of the corresponding definitions in (2.88) and (4.70).

These two alternative definitions lead again to the local form of linear momentum balance in (4.75).
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Recalling the local form of linear momentum balance in (4.77), the above equation reduces

to ∫

P
ei × ti dv = 0 . (4.81)

The localization theorem may be invoked again to conclude that

ei × ti = 0 . (4.82)

In component form, this condition can be expressed with the aid of (4.71) as

ei × (Tjiej) = Tjiei × ej = Tjiǫijkek = 0 , (4.83)

which means that Tij = Tji or, in direct form,

T = TT . (4.84)

Hence, angular momentum balance requires that the Cauchy stress tensor be symmetric.

e1

e2
e3

T11

T21

T31

T12

T13

T22

T23

T32

T33

Figure 4.11. Interpretation of the Cauchy stress components on an orthogonal parallelepiped

aligned with the axes of the basis {ei}.

An interpretation of the components of T on an orthogonal parallelepiped is shown in

Figure 4.11. Indeed, recalling (4.71)1, it follows that

tj = T1je1 + T2je2 + T3je3 , (4.85)

which means that Tij is the i-th component of the traction vector acting on the plane with

outward unit normal ej. The components Tij of the Cauchy stress tensor can be conveniently

ME185



Stress vector and stress tensor 131

put in matrix form as

[Tij ] =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 , (4.86)

where, in view of (4.84), [Tij ] is symmetric.

The traction vector t(n) can be decomposed into normal and shearing parts on the plane

formed by its line of action and the unit normal n to the surface on which it acts. Indeed,

the normal traction (that is, the projection of t(n) along n) is given by

(t(n) · n)n = (n⊗ n)t(n) , (4.87)

as in Figure 4.12. Then, the shearing traction is equal to

n

t(n)
(t(n) · n)n

t(n) − (t(n) · n)n

Figure 4.12. Projection of the traction to its normal and shearing components.

t(n) − (t(n) · n)n = t(n) − (n⊗ n)t(n) = (i− n⊗ n)t(n) . (4.88)

When the traction vector t(n) happens to be parallel to the unit normal n, then

(T− T i)n = 0 . (4.89)

This is a linear eigenvalue problem, which, owing to the symmetry of T possesses three real

eigenvalues T1 ≥ T2 ≥ T3. These may be determined from the solution of the characteristic

polynomial equation (2.52) in terms of the principal invariants of T, as defined in (2.53). It

can be easily shown that the associated unit eigenvectors n(1),n(2) and n(3) of T are always

mutually orthogonal provided the eigenvalues are distinct. Also, whether the eigenvalues are

distinct or not, there exists a set of mutually orthogonal eigenvectors for T. As expected,

if n is a principal direction of T, (4.89), (4.69), and (4.88) imply that

(i− n⊗ n)t(n) = (i− n⊗ n)Tn = (i− n⊗ n)Tn = 0 , (4.90)
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that is, the shearing traction vanishes on the plane with unit normal n which is an eigenvector

of T.

Example 4.6.1: Homogeneous equilibrium stress states
Consider three special homogeneous states of the Cauchy stress tensor T that lead to equilibrium in the absence
of body forces, that is, such that divT = 0.

(a) Hydrostatic pressure

In this state, the stress vector is always pointing in the direction normal to any plane that it is acting
on, that is,

t(n) = −pn ,

where p is called the pressure. It follows immediately from (4.69) that

T = −pi ,

as in the figure below.

p
p

p

p

p

p

(b) Pure tension along the e-axis

Without loss of generality, let e = e1. In this case, the traction vectors ti are of the form

t1 = Te1 , t2 = t3 = 0 .

Then, it follows from (4.70) or (4.71) that

T = T (e1 ⊗ e1) = T (e⊗ e) ,

as in the figure below.

T

Te1

e2
e3
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(c) Pure shear on the (e,k)-plane

Here, let e and k be two orthogonal vectors of unit magnitude and, without loss of generality, set e1 = e
and e2 = k. The tractions ti are now given by

t1 = Se2 , t2 = Se1 , t3 = 0 .

Appealing, again, to (4.70) or (4.71), it is easily seen that

T = S(e1 ⊗ e2 + e2 ⊗ e1) = S(e⊗ k+ k⊗ e) ,

as in figure below.

S
S S

S

e1

e2
e3

It is possible to resolve the stress vector acting on a surface of the current configuration

using the geometry of the reference configuration, if such a configuration is available. This

is plausible when, for example, one wishes to measure the internal forces developed in the

current configuration per unit area of the reference configuration. To this end, start by

letting df be the total force acting on the differential area da with outward unit normal n

on the surface ∂P in the current configuration, that is,

df = t(n)da . (4.91)

Also, let dA be the image of da in the reference configuration under χ−1
t and assume that

its outward unit is N. Then, define p(N) to be the traction vector resulting from resolving

the force df , which acts on ∂P , on the surface ∂P0, namely,

df = p(N)dA . (4.92)

Clearly, t and p are parallel, since they are both parallel to df , as is evident from (4.91)

and (4.92), see also Figure 4.13.

Returning to the integral statement of linear momentum balance in (4.39), note that this

can be now readily transformed to the reference configuration by virtue of (4.33), (4.91),

and (4.92), hence taking the form
∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA . (4.93)
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P0
P

N
n

p(N)

t(n)
df

df
dA

da

Figure 4.13. A force df acting on a differential area on the boundary of a domain ∂P and

resolved over the geometry of the current and reference configuration

Upon applying the preceding Cauchy lemma on p(N) and the Cauchy tetrahedron argument

to a point in P0, it is readily concluded, in complete analogy to (4.68), that

p(N) = pANA , (4.94)

where pA are the tractions developed in the current configuration, but resolved on the

geometry of the reference configuration on surfaces with outward unit normals EA. It follows

from (4.94) that

p(N) = pANA = pA(EA ·N) = (pA ⊗ EA)N = PN , (4.95)

where

P = pA ⊗ EA . (4.96)

Equation (4.95) is the referential counterpart of Cauchy’s stress theorem in (4.69). Also,

P ∈ L(TXR0, TxR) is the first Piola9-Kirchhoff10 stress . Unlike the Cauchy stress T, this

tensor is naturally unsymmetric, since it has a mixed basis, that is, P = PiAei ⊗ EA. It

follows from (4.95) that

pA = PiAei = PEA . (4.97)

This, in turn, implies that

pA · ei = PjAej · ei = PiA . (4.98)

9Gabrio Piola (1794–1850) was an Italian mathematician and mechanician.
10Gustav Kirchhoff (1824-1887) was a German physicist.
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Turning attention to the integral statement (4.93), it is concluded with the aid of (4.95)

and the divergence theorem that
∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA

=

∫

P0

ρ0b dV +

∫

∂P0

PN dA

=

∫

P0

ρ0b dV +

∫

P0

DivP dV (4.99)

which, upon using the localization theorem, results in

ρ0b+DivP = ρ0a . (4.100)

This is the local form of linear momentum balance in the referential description.11

Alternatively, Equation (4.96) and the divergence theorem may be invoked to show that
∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA

=

∫

P0

ρ0b dV +

∫

∂P0

pANA dA

=

∫

P0

ρ0b dV +

∫

P0

pA,A dV (4.101)

from which another version of the referential statement of linear momentum balance can be

derived in the form

ρ0b+ pA,A = ρ0a . (4.102)

Starting from the integral form of angular momentum balance in (4.44) and pulling it

back to the reference configuration with the aid of (4.33), (4.91) and (4.92), one finds that
∫

P0

x× ρ0a dV =

∫

P0

x× ρ0b dV +

∫

∂P0

x× p(N) dA . (4.103)

Using (4.94) and the divergence theorem on the boundary term gives rise to
∫

P0

x× ρ0a dV =

∫

P0

x× ρ0b dV +

∫

∂P0

x× pANA dA

=

∫

P0

x× ρ0b dV +

∫

P0

(x× pA),A dV . (4.104)

11It is important to emphasize the difference between the differential operators “div” and “Div” with the

former (the spatial divergence operator) involving derivatives with respect to the spatial coordinates xi and

the latter (the referential divergence operator) derivatives with respect to the referential coordinates XA.
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Expanding and appropriately rearranging the terms of the above equation leads to
∫

P0

[x× (ρ0a− ρ0b− pA,A) + x,A × pA] dV = 0 . (4.105)

Appealing to (4.102) and, subsequently, the localization theorem, one concludes that

x,A × pA = 0 . (4.106)

With the aid of (3.36), (4.97) and the chain rule, the preceding equation can be rewritten as

x,A × pA = FiAei × PjAej = FiAPjAǫijkek = 0 , (4.107)

which implies that FiAPjA = FjAPiA, that is,

FPT = PFT . (4.108)

This is a local form of angular momentum balance in the referential description.

Recalling (4.91) and (4.92), one may conclude with the aid of (4.69), (4.95), and Nanson’s

formula (3.82) that

Tnda = PNdA

= TJF−TNdA ,
(4.109)

so that

T =
1

J
PFT (4.110)

or, conversely,

P = JTF−T . (4.111)

Clearly, the above two relations are consistent with the referential and spatial statements

of angular momentum balance, namely (4.110) or (4.111) can be used to derive the local

form of angular momentum balance in spatial form from the referential statement and vice-

versa. Likewise, it is possible to derive the local linear momentum balance statement in the

referential (resp. spatial) form from its corresponding spatial (resp. referential) counterpart,

see Exercise 4.7.

Note that there is absolutely no approximation or any other source of error associated

with the use of the balance laws in the referential as opposed to the spatial description.

Indeed, the invertibility of the motion at any fixed time t implies that both descriptions

of the momentum balance laws are completely equivalent. In this regard, the referential

ME185



Stress vector and stress tensor 137

description should not be confused with the statement of the momentum balance laws at the

reference time t0.

Other stress tensors beyond the Cauchy and first Piola-Kirchhoff tensors are frequently

used in materials modeling. Among them is the Kirchhoff stress tensor τ ∈ L(TxR, TxR),

defined as

τ = JT = PFT , (4.112)

with components

τij = JTij . (4.113)

Clearly, the Kirchhoff stress has both “legs” in the current configuration and is also sym-

metric due to the symmetry of T. Also, the nominal stress tensor Π ∈ L(TxR, TXR0) is

defined as the transpose of the first Piola-Kirchhoff stress, that is,

Π = PT = JF−1T , (4.114)

and has components

ΠAi = JF−1
Aj Tji . (4.115)

In addition, the second Piola-Kirchhoff stress tensor S ∈ L(TXR0, TXR0) is defined as

S = F−1P = JF−1TF−T , (4.116)

with its components given according to

SAB = F−1
Ai PiB = JF−1

Ai TijF
−1
Bj . (4.117)

Conversely, one may write

T =
1

J
PFT =

1

J
FSFT . (4.118)

It is clear from (4.116) and (4.117) that S has both “legs” in the reference configuration and

is symmetric. Figure 4.14 depicts the relation between the stress tensors T, P, and S.

T P

S

JF −1
(·)F −T

F−1(·)

J(·)F−T

Figure 4.14. Schematic depiction of the relation between the Cauchy stress T, the first Piola-

Kirchhoff stress P, and the second Piola-Kirchhoff stress S.
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The definition of all stress tensors other than the Cauchy stress is dependent on the

existence of a reference configuration.

4.7 The theorems of mechanical energy balance and

virtual power

Consider again the body B in the current configuration R at time t and take an arbitrary

material region P with smooth boundary ∂P , as in Figure 4.1. With reference to the

definition of the external forces in Section 4.5, express the rate at which the body force b

and surface traction t(n) do work in P and on ∂P , respectively, as

Rb(P) =

∫

P
ρb · v dv (4.119)

and

Rc(P) =

∫

∂P
t(n) · v da . (4.120)

Also, define the rate of work done by all external forces as

R(P) = Rb(P) +Rc(P) . (4.121)

In addition, define the total kinetic energy of the material points contained in P as

K(P) =

∫

P

1

2
v · vρ dv . (4.122)

Starting from the local statement of linear momentum balance (4.75), one may take the

dot product of both sides with the velocity v to find that

ρa · v = ρb · v + divT · v . (4.123)

Now, note that, according to the product rule,

divT · v = div(TTv)−T · gradv
= div(Tv)−T · (D+W)

= div(Tv)−T ·D , (4.124)

where use is made of (3.144) and (4.84), and also that

ρa · v =
1

2
ρ
d

dt
(v · v) . (4.125)
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Equations (4.124) and (4.125) may be used to rewrite (4.123) as

1

2
ρ
d

dt
(v · v) +T ·D = ρb · v + div(Tv) . (4.126)

Next, integrating (4.126) over P leads to

∫

P

1

2
ρ
d

dt
(v · v) dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

P
div(Tv) dv (4.127)

or, upon using conservation of mass on the first term of the left-hand side and the divergence

theorem on the second term of the right-hand side of (4.127),

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
Tv · n da . (4.128)

Recalling (4.69) and (4.84), the preceding equation can be further rewritten as

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da . (4.129)

The second term on the left-hand side of (4.129),

S(P) =

∫

P
T ·D dv , (4.130)

is called the stress power and it represents the rate at which the stresses do work in P . Taking

into account (4.119), (4.120), (4.122), and (4.130), Equation (4.127) may be expressed as

d

dt
K(P) + S(P) = Rb(P) +Rc(P) = R(P) . (4.131)

Equation (4.131) states that, for any region P , the rate of change of the kinetic energy and

the stress power of the particles in P are balanced by the rate of work done by the external

forces acting on the particles in P . This is a statement of the balance of mechanical energy.

One may physically interpret it as asserting that changes in the work done by the external

forces are reflected in changes in the kinetic energy and/or the deformation of the body. It

is important to emphasize here that mechanical energy balance is derivable from the three

basic principles of the mechanical theory, namely conservation of mass and balance of linear

and angular momentum, hence is not an independent axiom.
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Returning to the stress power term S(P) in (4.130), note that

∫

P
T ·D dv =

∫

P
T · L dv

=

∫

P

1

J
PFT · L dv

=

∫

P0

PFT · L dV

=

∫

P0

P · LF dV

=

∫

P0

P · Ḟ dV , (4.132)

where use is made of (4.110), (3.76) and (3.135). Further, appealing to (3.151) and (4.118),

it follows that

∫

P
T ·D dv =

∫

P

(
1

J
FSFT

)

·
(
F−TDF−1

)
dv

=

∫

P

(
FSFT

)
·
(

F−T ĖF−1
)

dV

=

∫

P0

S · Ė dV . (4.133)

Equations (4.132) and (4.133) reveal that P is the work-conjugate kinetic measure to F

in P0 and, likewise, S is work-conjugate to E. These equations appear to leave open the

question of work-conjugacy for T, which, indeed, cannot be addressed by merely relying on

the notion of material time derivative.

A referential form of the mechanical energy balance theorem may be readily derived

from (4.129) by invoking balance of mass and using (4.91), (4.92) and (4.132). This is

expressed as

d

dt

∫

P0

1

2
ρ0v · v dV +

∫

P0

P · Ḟ dV =

∫

P0

ρ0b · v dV +

∫

∂P0

p(N) · v dA , (4.134)

see also Exercise 4-13.

Instead of taking the dot-product of (4.75) with the actual velocity v, as in (4.123), one

may use a virtual velocity v∗ = ṽ(x, t), that is, any vector field on P . This leads to the

scalar equation

ρa · v∗ = ρb · v∗ + divT · v∗ . (4.135)
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Following the steps of the derivation for balance of mechanical energy, it may be readily

shown that
∫

P
ρa · v∗ dv +

∫

P
T ·D∗ dv =

∫

P
ρb · v∗ dv +

∫

∂P
t(n) · v∗ da , (4.136)

where

D∗ =
1

2

[

∂ṽ∗

∂x
+

(
∂ṽ∗

∂x

)T
]

(4.137)

is the virtual rate-of-deformation tensor, see Exercise 4-15. Equation (4.136) is a statement

of the virtual power theorem. According to it, the virtual power of the inertial force plus the

virtual stress power, which comprise the left-hand side of (4.136), are equal to the virtual

power of the external forces on the right-hand side of (4.136). A corresponding referential

statement of the virtual power theorem may be likewise deduced in the form
∫

P0

ρ0a · v∗ dV +

∫

P0

P · F∗ dV =

∫

P0

ρ0b · v∗ dV +

∫

∂P0

p(n) · v∗ dA , (4.138)

where

Ḟ∗ =
∂v̂∗

∂X
(4.139)

is the virtual rate of change of the deformation gradient tensor, written in terms of the virtual

velocity field v∗ = v̂∗(X, t).

It can be shown that the theorem of virtual power, say in the spatial form (4.136), is

equivalent to the local statement of linear momentum balance (4.36) conditional on the

continuity of all terms in (4.135). Indeed, recognizing that (4.36) implies (4.136), it is

interesting to focus on the converse. To this end, Equation (4.136) can be easily reduced to
∫

P
(ρa− ρb− divT) · v∗ dv = 0 , (4.140)

for any virtual velocity v∗. Proceeding by contradition, assume that there is a point x ∈ P
at time t where ρa− ρb− divT 6= 0. If so, one may choose v∗ to vanish everywhere in P
for any given time time except in a neighborhood of x, in which (ρa− ρb− divT) · v∗ > 0.

This is always possible due to the assumed continuity of the preceding scalar quantity. It

follows that
∫

P(ρa − ρb − divT) · v∗ dv > 0, which contradicts the original assumption.

Thus, satisfaction of the theorem of virtual power implies the local enforcement of linear

momentum balance.

The theorem of virtual power is particularly useful in the enfocement of linear momentum

balance using numerical techniques that rely on integral statement of the balance laws.
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4.8 The principle of energy balance

The physical principles postulated up to this point are incapable of modeling the intercon-

vertibility of mechanical work and heat. In order to account for this class of (generally cou-

pled) thermomechanical phenomena, one needs to introduce an additional principle known

as balance of energy.

Preliminary to stating the balance of energy, define a scalar field r = r(x, t) called the

heat supply per unit mass (or specific12 heat supply), which quantifies the rate at which

heat is supplied to (or absorbed by) the body through radiation. Also, define a scalar

field h = h(x, t;n) = h(n)(x, t) called the heat flux per unit area across a surface ∂P with

outward unit normal n. This quantifies the rate at which heat is supplied to the body across

its boundary through conduction or convection. Now, given any region P ⊆ R, define the

total rate of heating H(P) as

H(P) =

∫

P
ρr dv −

∫

∂P
h(n) da , (4.141)

where the negative sign in front of the boundary integral signifies the fact that the flux of

heat is assumed positive when it exits the region P through the boundary ∂P .

Next, admit the existence of a scalar function ε = ε(x, t) per unit mass, called the internal

energy or specific internal energy. This function quantifies all forms of energy stored in the

body other than kinetic energy. Examples of stored energy include strain energy (that is,

energy due to deformation), chemical energy, and thermal energy. The internal energy U(P)

stored in P is then given by

U(P) =

∫

P
ρε dv . (4.142)

The principle of balance of energy is postulated in the form

d

dt

∫

P

[
1

2
ρv · v + ρε

]

dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da+

∫

P
ρr dv −

∫

∂P
h(n) da . (4.143)

This is also sometimes referred to as a statement of the first law of thermodynamics and can

be written as
d

dt
[K(P) + U(P)] = R(P) +H(P) . (4.144)

Equation (4.143) (or, equivalently (4.144)) states that the rate of change of the total internal

energy (including kinetic energy) of the particles in a region P is balanced by the rate of

12The term “specific” is intended to signify that the quantity is measured per unit mass.
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mechanical work done by the external forces on these particles and the rate of heating applied

to these particles.

Subtracting (4.129) from (4.143) leads to a statement of balance of thermal energy in the

form
d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P
h(n) da . (4.145)

According to this, the rate of change of the internal energy for the particles in P is balanced

by the stress power and the total rate of heating for the same particles.

Returning to the heat flux h = h(x, t;n), note that one may apply a standard argument to

formally deduce the dependence of h on n, as already done with the stress vector t = t(x, t;n)

in Section 4.5. Indeed, with reference to Figure 4.8, one may apply thermal energy balance

to a region P with boundary ∂P and to each of two regions P1 and P2 with boundaries

∂P1 and ∂P2, where P1 ∪ P2 = P and P1 ∪ P2 = ∅. Also, the boundaries ∂P1 = ∂P ′ ∪ σ,

∂P2 = ∂P ′′ ∪ σ have a common surface σ and ∂P ′ ∪ ∂P ′′ = ∂P . It follows that

d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P
h(n) da . (4.146)

and, also,
d

dt

∫

P1

ρε dv =

∫

P1

T ·D dv +

∫

P1

ρr dv −
∫

∂P1

h(n) da (4.147)

and
d

dt

∫

P2

ρε dv =

∫

P2

T ·D dv +

∫

P2

ρr dv −
∫

∂P2

h(n) da (4.148)

Adding the last two equations leads to

d

dt

∫

P1∪P2

ρε dv =

∫

P1∪P2

T ·D dv +

∫

P1∪P2

ρr dv −
∫

∂P1∪∂P2

h(n) da (4.149)

or, equivalently,

d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P1∪∂P2

h(n) da . (4.150)

Subtracting (4.146) from (4.150) results in

∫

∂P1∪∂P2

h(n) da−
∫

∂P
h(n) da = 0 , (4.151)

or, equivalently, ∫

∂P ′∪σ
h(n) da+

∫

∂P ′′∪σ
h(n) da =

∫

∂P
h(n) da . (4.152)
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As in the case of the stress vector, the preceding equation may be expanded to
∫

∂P ′∪∂P ′′

h(n) da+

∫

σ

h(n1) da+

∫

σ

h(n2) da =

∫

∂P
h(n) da (4.153)

or ∫

σ

(h(n) − h(−n))da = 0 , (4.154)

where n1 = n and n2 = −n. Since σ is an arbitrary surface and h is assumed to depend

continuously on n and x along σ, the localization theorem yields the condition

h(n) = −h(−n) . (4.155)

or, more explicitly,

h(x, t;n) = −h(x, t;−n) . (4.156)

This is Cauchy’s lemma for the heat flux, which states that the flux of heat exiting a body

across a surface with outward unit normal n at a point x is equal to the flux of heat entering

a neighboring body at the same point across the same surface.

Using the tetrahedron argument of Section 4.6, in connection with the thermal energy

balance equation (4.145) and the flux continuity equation (4.156), gives rise to

h(n) = hini , (4.157)

where hi are the fluxes across the faces of the tetrahedron with outward unit normals ei.

Thus, one may write

h(n) = q · n , (4.158)

where q is the heat flux vector with components qi = hi, see Exercise 4-31.

Now, returning to the integral statement of energy balance in (4.143), one may invoke

mass conservation to rewrite it as
∫

P
(ρv · v̇ + ρε̇) dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da+

∫

P
ρr dv −

∫

∂P
h(n) da . (4.159)

Using (4.69) and (4.158), the above equation may be put in the form
∫

P
(ρv · v̇ + ρε̇) dv =

∫

P
ρb · v dv +

∫

∂P
Tn · v da+

∫

P
ρr dv −

∫

∂P
q · n da . (4.160)

Upon recalling (4.124) and invoking the divergence theorem, it is easily seen that
∫

∂P
Tn · v da =

∫

P
(divT · v +T ·D) dv (4.161)
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and, also, ∫

∂P
q · n da =

∫

P
div q dv . (4.162)

When the last two equations are substituted in (4.160), one finds that

∫

P

[
(ρv̇ − ρb− divT) · v + ρε̇−T ·D− ρr + div q

]
dv = 0 . (4.163)

Upon recalling the local form of linear momentum balance (4.36) and invoking the localiza-

tion theorem, the preceding equation gives rise to the local form of energy balance as

ρε̇ = T ·D+ ρr − div q . (4.164)

This equation could be also derived along the same lines from the integral statement of

thermal energy balance (4.145).13

Referential counterparts of (4.143), (4.145) and (4.164) may be derived in complete anal-

ogy to the derivation of the referential traction vector and stress tensor in Section 4.5. In

particular, the referential form of the local statement of energy balance is

ρ0ε̇ = P · Ḟ+ ρ0r −Div q0 , (4.165)

where q0 = JF−1q is the referential heat flux vector, see Exercise 4-32.

Example 4.8.1: Rigid heat conductor
Consider a rigid heat conductor, for which Killing’s Theorem (see Example 3.3.2 implies that D = 0. Further,
assume that Fourier’s law holds, that is,

q = −k gradT , (4.166)

where T is the empirical temperature and k > 0 is the (isotropic) heat conductivity. These conditions imply
that the balance of energy (4.164) reduces to

ρε̇ = div(k gradT ) + ρr . (4.167)

Further, assume that the internal energy depends exclusively on T and that this dependence is linear, hence
dε

dT
= c, where c is termed the heat capacity. It follows from (4.167) that

ρcṪ = div(k gradT ) + ρr , (4.168)

which is the classical equation of transient heat conduction.

13The energy equation frequently quoted in elementary thermodynamics textbooks as “dU = δQ+ δW”,

where dU corresponds to ρε̇, δQ to ρr − divq, and δW to T ·D.
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4.9 The second law of thermodynamics

Preliminary to discussing a continuum-mechanical form of the second law of thermodynam-

ics, admit the existence of the absolute temperature θ > 0 and the entropy η ≥ 0 per unit

mass. Neither quantity can be fully prescribed in continuum mechanical terms without

resorting to references to discrete systems (e.g., particles), hence both are admitted here

axiomatically. Broadly speaking, the absolute temperature is related to the energy of the

vibrational motion of elementary particles comprising a body, while the entropy (whose units

are energy over temperature) is related to the amount of stored energy in the system that

cannot be put to work. The entropy is considered an extensive quantity, while the absolute

temperature is intensive one.

There is no consensus in continuum mechanics on a definitive version of the second law of

thermodynamics. This reflects the fact that as a theory, thermodynamics was not developed

for continuous media. Therefore, adapting it to continuum mechanics entails assumptions

and ambiguity. The most frequently cited expression of the second law of thermodynamics

in continuum mechanics is in the form of the Clausius14-Duhem15 inequality, according to

which
d

dt

∫

P
ρη dv ≥

∫

P

ρr

θ
dv −

∫

∂P

h(n)

θ
da , (4.169)

for any region P with boundary ∂P occupied by a part of the body. One may think of the

two terms on the right-hand side of (4.169) as quantifying the entropy supply through the

volume and entropy flux through the boundary, respectively. Hence, the Clausius-Duhem

inequality could be interpreted as stating that the rate of change of entropy in any part of

a body equals or exceeds the total supply of entropy to the same part of the body from

external sources.16

A local counterpart of (4.169) may be readily derived by first recalling (4.158) and ap-

plying the divergence theorem for the boundary term. This leads to
∫

∂P

h(n)

θ
da =

∫

∂P

q · n
θ

da =

∫

P
div
(q

θ

)

dv . (4.170)

Invoking the Reynolds transport theorem (4.2) and the balance of mass in the form (4.28),

in conjunction with (4.170) and the localization theorem, leads to the local form of the

14Rudolf Clausius (1822–1888) was a German physicist and mathematician.
15Pierre Maurice Marie Duhem (1861–1916) was a French physicist and mathematician.
16This statement corresponds to the version of the second law of thermodynamics frequently quoted in

elementary textbooks as “dS ≥ δQ

T
”, where dS is the change of entropy, δQ the infinitesimal transfer of

heat, and T the temperature.
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Clausius-Duhem inequality

ρη̇ ≥ ρr

θ
− div

(q

θ

)

(4.171)

or, upon expanding the divergence term and multiplying through with temperature,

ρθη̇ ≥ ρr − div q+ q · g
θ
, (4.172)

where g is the spatial temperature gradient, that is,

g = grad θ . (4.173)

Recalling the local form (4.164) of the energy balance, one may rewrite the Clausius-

Duhem inequality as

ρǫ̇− ρθη̇ −T ·D+ q · g
θ

≤ 0 . (4.174)

Now, define the Helmholtz free energy Ψ per unit mass as

Ψ = ǫ− ηθ . (4.175)

This can be heuristically thought of as the part of the stored energy which is capable of pro-

ducing work. Expressing the rate of the internal energy in (4.174) in terms of the Helmholtz

free energy Ψ in (4.175), one reaches the equivalent local statement of Clausius-Duhem

inequality

ρΨ̇ + ρηθ̇ −T ·D+ q · g
θ

≤ 0 . (4.176)

Corresponding referential statements to (4.174) and (4.176) can be easily derived as

ρ0ǫ̇− ρ0θη̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 (4.177)

and

ρ0Ψ̇ + ρ0ηθ̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 , (4.178)

respectively, where G is the referential temperature gradient, that is,

G = Grad θ , (4.179)

see Exercise 4-37.

The fundamental challenge with the preceding formulation of the second law of thermo-

dynamics is that entropy is not a defined quantity (either directly or by prescription). There-

fore, stipulating axiomatically any inequality involving a primitive quantity is not guaranteed
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to yield meaningful results. To address this concern, one may apply the Clausius-Duhem

inequality to simple continuum systems and assess the plausibility of its implications. In ad-

dition, one may seek to find prescriptions for the identification of entropy for such systems.

If both endeavors succeed, then one merely gains confidence in the use of the inequality.

The rigid heat conductor is a simple system in which one may test the plausibility of the

Clausius-Duhem inequality. Here, assume that the Helmholtz free energy and the heat flux

depend on the temperature and the temperature gradient, that is,

Ψ = Ψ̂(θ,g) , q = q̂(θ,g) . (4.180)

In the absence of deformation, the Clausius-Duhem inequality in the form (4.176) reduces

to

ρΨ̇ + ρηθ̇ + q · g
θ

≤ 0 . (4.181)

Upon expressing the rate of Ψ in terms of its constituent parts in view of (4.180)1, it follows

that

ρ

(

∂Ψ̂

∂θ
θ̇ +

∂Ψ̂

∂g
· ġ
)

+ ρηθ̇ + q · g
θ

≤ 0 , (4.182)

hence,

ρ

(

∂Ψ̂

∂θ
+ η

)

θ̇ + ρ
∂Ψ̂

∂g
· ġ + q · g

θ
≤ 0 . (4.183)

Now, consider a homothermal process, that is take θ to be spatially homogeneous, therefore

g = 0, and further assume ġ = 0. Since θ̇ can be positive, zero, or negative, the only way

for the preceding inequality to hold is if

η = −∂Ψ̂

∂θ
. (4.184)

Next, take a process in which the temperature θ is again spatially homogeneous, hence g = 0,

but where ġ 6= 0. In light of (4.184), the inequality (4.183) is satisfied only if

∂Ψ̂

∂g
= 0 , (4.185)

which means that Ψ may depend only on the temperature, that is, Ψ = Ψ̂(θ). This reduces

the inequality (4.183) to

q · g ≤ 0 , (4.186)

which states that the flux of heat opposes the gradient of the temperature, a result that

makes good physical sense.
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Recall next the constitutive assumption for the heat flux in (4.180)2, and note that, upon

fixing θ, (4.186) implies that the real-valued function

f(g) = q̂(θ,g) · g (4.187)

attains a maximum value of zero at g = 0. This means that

∂f

∂g
(0) =

q̂(θ,0)

∂g
0+ q̂(θ,0) = 0 , (4.188)

which immediately implies that

q̂(θ,0) = 0 . (4.189)

The last condition states that the heat flux vanishes when the temperature gradient is zero,

which is, again, entirely plausible. If the heat flux obeys Fourier’s law (4.166) in terms of

the absolute temperature, then (4.186) implies that the constant k = k(θ) is necessarily

non-negative.

Next, return to the energy equation (4.164) (with a vanishing stress power term) and

observe that (4.175) implies

ǫ̇ = Ψ̇ + η̇θ + ηθ̇ =
∂Ψ̂

∂θ
θ̇ + η̇θ + ηθ̇ =

(

∂Ψ̂

∂θ
+ η

)

θ̇ + η̇θ = η̇θ , (4.190)

where use is made of (4.184). The preceding equation transforms the energy equation to

ρθη̇ = ρr − div q (4.191)

or

ρη̇ = ρ
r

θ
− div q

θ
. (4.192)

One may think of the above equation as a balance of entropy in which the rate of change

of entropy is balanced by the supply and flux terms.17 It is easy to conclude from (4.191)

that isentropic processes (where η̇ = 0) are adiabatic processes (where ρr − div q = 0) and

vice-versa.

For the rigid heat conductor, it is possible to formulate a prescription for the identification

of the entropy η. To this end, consider a homothermal process, where, by definition, g = 0,

hence, by virtue of (4.189), also q = 0. Therefore, equation (4.191) reduces to

η̇θ = r . (4.193)

17This equation may be directly compared to the elementary relation dS =
δQ

T
for so-called reversible

processes in classical thermodynamics.
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Starting from some baseline temperature θ0 at time t0 where the entropy is assumed to

vanish, one may write, with the aid of (4.193),

η(θ) =

∫ t

t0

r

θ
dt , (4.194)

where θ remains spatially homogeneous but varies with time and r is chosen to impose this

state.

4.10 The transformation of mechanical and thermal

fields under superposed rigid-body motions

In this section, the transformation under superposed rigid-body motions is considered for

mechanical fields, such as density and stress, as well as for the balance laws themselves.

Starting with the stress vector t = t(x, t;n), and recalling the general form of the su-

perposed rigid-body motion in (3.179), write the same function in the configuration R+ as

t+ = t+(x+, t;n+). To argue how t and t+ may be related, first recall the transforma-

tion (3.205) of the unit normal n and also that t is linear in n, as established in (4.69). Since

the two motions give rise to the same deformation (to within a rigid transformation), it is

then reasonable to assume18 that, under a superposed rigid-body motion, t+ will not change

in magnitude relative to t and will have the same orientation relative to n+ as t has relative

to n, see Figure 4.15. Therefore, it is postulated that

t+ = Qt , (4.195)

that is, the stress vector is objective. The above transformation indeed implies that |t+| = |t|
and t+ · n+ = t · n.

Consider next the transformation of the Cauchy stress tensor under superposed rigid-

body motions. By way of background, it is important to emphasize here that, unlike the

transformation of kinematic terms, which is governed purely by geometry, the transformation

of balance laws (and any relations that emanate from them) in continuum mechanics is

governed by the principle of form-invariance under superposed rigid-body motion. This,

effectively, states that the balance laws are invariant under superposed rigid-body motions

18This is, indeed, only an assumption. Despite its plausibility, there are special problems in which this as-

sumption may not be physically reasonable. These typically involve physical systems, such as, e.g., turbulent

fluids, which may not strictly adhere to the definition of a continuum.
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n

t
n+ t+

Figure 4.15. The relation between the traction vectors t and t+.

in the sense that their mathematical representation remains unchanged under such motions.

Appealing to this principle, and taking into account (4.69), the relation between the stress

vector and the Cauchy stress tensor (itself an implication of linear momentum balance) in

the superposed configuration takes the form

t+ = T+n+ . (4.196)

Admitting (4.195), and using (4.69), (3.205) and (4.196), it follows that

t+ = Qt = QTn

= T+n+ = T+Qn ,
(4.197)

from where it is concluded that

(QT−T+Q)n = 0 . (4.198)

Owing to the arbitrariness of n, this leads to

T+ = QTQT . (4.199)

Equation (4.199) implies that once the stress vector is assumed to be objective, then the

Cauchy stress tensor T is likewise an objective spatial tensor.

Recall next the relation between the Cauchy and the first Piola-Kirchhoff stress tensor

in (4.110). Given that this relation also holds in the superposed rigid-body configuration, it

follows that

P+ = J+T+(F−T )+ = J(QTQT )(QF−T ) = Q(JTF−T ) = QP , (4.200)

where the kinematic transformations (3.178) and (3.201) are employed in addition to (4.199).

Equation (4.200) implies that the first Piola-Kirchhoff stress P is an objective two-point

tensor. Proceeding in an analogous manner for the second Piola-Kirchhoff stress tensor S,

it follows from (4.116)1 and (4.200) that

S+ = (F−1)+P+ = (F−1QT )(QP) = F−1P = S , (4.201)
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which implies that S is an objective referential tensor.

Since (4.201) holds true, it follows immediately that the material time derivative Ṡ sat-

isfies

Ṡ+ = Ṡ , (4.202)

that is, Ṡ is also objective. However, starting from the relation (4.199) and using (3.182) it

can be seen that

Ṫ+ = Q̇TQT +QṪQT +QTQ̇T

= (ΩQ)TQT +QṪQT +QT(ΩQ)T

= Ω(QTQT ) +QṪQT + (QTQT )ΩT

= ΩT+ +QṪQT −T+Ω , (4.203)

which shows that, unlike T, the material time derivative Ṫ of the Cauchy stress is not

objective. A similar conclusion may be drawn for the rate Ṗ of the first Piola-Kirchhoff

stress tensor, where (4.200), in conjunction with (3.182), implies that

Ṗ+ = Q̇P+QṖ = (ΩQ)P+QṖ = ΩP+ +QṖ . (4.204)

Regarding the transformation under superposed rigid-body motions of the internal en-

ergy, as well as the heat supply and flux, it is typically assumed that

ε+ = ε , r+ = r , h+ = h . (4.205)

Equations (3.205) and (4.205)3, in conjunction with the form-invariance of the thermal energy

balance under superposed rigid-body motions, imply that

h+ = q+ · n+ = q+ ·Qn

= h = q · n , (4.206)

therefore

(q+ −Qq) ·Qn = 0 . (4.207)

Once more, the arbitrariness of n leads to

q+ = Qq , (4.208)

hence the heat flux vector q is objective.

ME185



Mechanical and thermal fields under superposed rigid-body motions 153

Next, invoke form-invariance under superposed rigid-body motions to the principle of

mass balance. Indeed, using the local referential form (4.33) of this principle and taking into

account (3.201) gives rise to

ρ0 = ρ+J+ = ρ+J

= ρJ ,
(4.209)

which results in

ρ+ = ρ . (4.210)

Hence, the mass density is unaffected by superposed rigid-body motion, which is an intu-

itively plausible condition. The same conclusion may be reached when starting from the

spatial form of mass balance, see Exercise 4-27.

Invoking form-invariance under superposed rigid-body motions for the local form of linear

momentum balance in (4.75) implies that

div+ T+ + ρ+b+ = ρ+a+ . (4.211)

Appealing to (4.199) and resorting to components, note that

∂T+
ij

∂x+
j

=
∂(QikTklQjl)

∂xm

∂χm

∂x+
j

= Qik
∂Tkl

∂xm

QjlQjm = Qik
∂Tkl

∂xm

δlm = Qik
∂Tkl

∂xl

, (4.212)

where it is recognized from (3.179) that
∂χ

∂x+
= QT , therefore, in components,

∂χm

∂x+
j

= Qjm.

The outcome of equation (4.212) may be written using direct notation as

div+ T+ = Q divT , (4.213)

which shows that the divergence of the Cauchy stress transforms as an objective vector.

Using (4.75), (4.211) and (4.213), one concludes that

div+T+ = ρ+(a+ − b+) = ρ(a+ − b+)

= Q divT = ρQ(a− b) ,

from where it follows that

a+ − b+ = Q(a− b) . (4.214)

This means that, under superposed rigid-body motions, the body forces transform as

b+ = Qb+ a+ −Qa , (4.215)
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where an explicit expression for a+ in terms of the superposed motion is given in (3.186).

It is reasonable to think of b+ as an apparent body force which artificially encompasses the

part a+ −Qa of the acceleration induced by the superposed rigid-body motion.19

Generally, a superposed rigid-body motion is termed inertial if the body force in the

statement of linear momentum balance transforms objectively.20 Physically, an inertial

superposed rigid-body motion does not introduce artificial body forces. Given (3.186)

and (4.215), it is clear that a superposed rigid-body motion is inertial if, and only if,

a+ = Qa. In this case, (4.213) and (4.215) imply that each of the three vector terms in

the local statement of linear momentum balance (4.211) involves a proper orthogonal trans-

formation by Q.

Example 4.10.1: Inertial rigid-body motions
It is easy to show that any constant-velocity rigid translation superposed on a given motion is inertial. Indeed,
in this case,

Q = i , Q̇ = Q̈ = 0 , c = c0t ,

where c0 is a constant vector. Recalling (3.186), this readily implies that a+ = a and also b+ = b. Any
constant rigid rotation, where

Q = Q0 , Q̇ = Q̈ = 0 , c = 0 ,

is also inertial, since here, according to (3.186), a+ = Qa, therefore also b+ = Qb.

Equations (4.205)1,2 and (4.210), together with (4.199) and (3.207), imply that the bal-

ance of energy is form-invariant under superposed rigid-body motions, in the sense that

ρ+ε̇+ = T+ ·D+ + ρ+r+ − div+ q+ (4.216)

reduces to the original energy balance equation (4.164), since, by analogy to the derivation

of (4.213), it is easy to show using (4.208), (3.179), and the chain rule that

∂q+i
∂x+

i

=
∂(Qijqj)

∂xk

∂xk

∂x+
i

= Qij
∂qj
∂xk

Qik =
∂qj
∂xk

δjk =
∂qj
∂xj

(4.217)

or, in direct notation,

div+ q+ = div q . (4.218)

19Parabolic flight, intended to induce a condition of weightlessness within the earth’s atmosphere, is a

good example of a superposed rigid-body motion designed to render b+ approximately equal to zero by

means of a centrifugal force which is equal and opposite to the force of gravity.
20Some authors prefer to write linear momentum balance only for inertial superposed rigid-body motions

rather than for arbitrary superposed rigid-body motions so as to avoid introducing the apparent body forces

in (4.215).

ME185



The Green-Naghdi-Rivlin theorem 155

4.11 The Green-Naghdi-Rivlin theorem

This important theorem highlights the unique role of the energy equation among the funda-

mental principles of continuum mechanics.

Assume that the principle of energy balance, taken here in its integral form, remains

form-invariant under superposed rigid-body motions. With reference to (4.143), this means

that

d

dt

∫

P+

[
ρ+ε+ +

1

2
ρ+v+ · v+

]
dv+

=

∫

P+

ρ+b+ · v+ dv+ +

∫

∂P+

t+ · v+ da+ +

∫

P+

ρ+r+ dv+ −
∫

∂P+

h+ da+ . (4.219)

Now, choose a special superposed rigid-body motion, which is a rigid translation at constant

velocity, such that at a given time t,

Q = i , c(t) = c0t , (4.220)

where c0 is a constant non-zero vector in E3, see also Exercise 4.10.1. It follows immediately

from (3.184), (3.186) and (4.220) that

v+ = v + c0 , a+ = a . (4.221)

Moreover, it is readily concluded from (4.215), (4.195), (4.220) and (4.221) that under this

superposed rigid translation

b+ = b , t+ = t . (4.222)

It follows from (4.205), (4.210), (4.221), and (4.222) that (4.219) takes the form

d

dt

∫

P

[
ρε+

1

2
ρ(v + c0) · (v + c0)

]
dv

=

∫

P
ρb · (v + c0) dv +

∫

∂P
t · (v + c0) da+

∫

P
ρr dv −

∫

∂P
h da . (4.223)

Upon subtracting (4.143) from (4.223), it is concluded that

c0 ·
(

d

dt

∫

P
ρv dv −

∫

P
ρb dv −

∫

∂P
t da

)

+
1

2
(c0 · c0)

(
d

dt

∫

P
ρ dv

)

= 0 . (4.224)

Since c0 is an arbitrary constant vector, one may rewrite (4.224) by replacing c0 with −c0

and then add the two equations. Owing to the arbitrariness of c0 it now follows that

d

dt

∫

P
ρ dv = 0 , (4.225)
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hence, also,
d

dt

∫

P
ρv dv =

∫

P
ρb dv +

∫

∂P
t da . (4.226)

This, in turn, means that translational form-invariance of the energy equation (at constant

velocity), as well as the conditions (4.205) and (4.222) jointly imply the integral forms of

mass conservation and linear momentum balance.21

Next, a second special superposed rigid-body motion is chosen, such that, for a given

time t,

Q = i , Q̇ = Ω0 , c = 0 , (4.227)

whereΩ0 is a constant skew-symmetric tensor. Given (4.227), it can be easily seen from (3.179),

(3.184) and (3.186) that

v+ = v +Ω0x , a+ = a+ 2Ω0v +Ω2
0x . (4.228)

Equations (4.228) imply that the superposed motion is a rigid rotation with constant angular

velocity defined by Ω0 on the original current configuration of the continuum. Taking into

account (4.195), (4.215), (4.227) and (4.228)2, it is established that in this case

b+ = b+ 2Ω0v +Ω2
0x , t+ = t . (4.229)

In addition, equations (4.228)1 and (4.229)1 lead to

v+ · v+ = v · v + 2Ω0x · v +Ω0x ·Ω0x (4.230)

and

b+ · v+ = b · v + b ·Ω0x+ 2Ω0v · v + 2Ω0v ·Ω0x+Ω2
0x · v +Ω2

0x ·Ω0x

= b · v + b ·Ω0x+Ω0v ·Ω0x , (4.231)

where the readily verifiable identities

Ω0v · v = 0 , Ω2
0x ·Ω0x = 0 , Ω0v ·Ω0x+Ω2

0x · v = 0 (4.232)

21If condition (4.222)1 were to be derived from (4.215), then the argument leading to the proof of the first

part of the Green-Naghdi-Rivlin theorem becomes circular, as it presumes that linear momentum balance

holds before deducing it. Instead, one could treat this condition as an implication of the inertial nature of

translations under constant velocity.
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are employed. Similarly, using (4.228)1, (4.229)1, and (4.232), it is seen that

1

2

d

dt
(v+ · v+) = a · v + a ·Ω0x+Ω0v ·Ω0x+Ω0v · v

= a · v + a ·Ω0x+Ω0v ·Ω0x . (4.233)

Invoking now form-invariance of the energy equation under the superposed rigid rotation, it

can be concluded from (4.219), as well as from (4.230), (4.231) and (4.233), that

d

dt

∫

P
ρε dv +

∫

P
ρ(a · v + a ·Ω0x+Ω0v ·Ω0x) dv

=

∫

P
ρ(b · v + b ·Ω0x+Ω0v ·Ω0x) dv

+

∫

∂P
t · (v +Ω0x) da+

∫

P
ρr dv −

∫

∂P
h da . (4.234)

After subtracting (4.143) from (4.234) and simplifying the resulting equation, it follows that

∫

P
ρa ·Ω0x dv =

∫

P
ρb ·Ω0x dv +

∫

∂P
t ·Ω0x da . (4.235)

Recalling that, for any given vector z in E3, z · (Ω0x) = z · (ω0×x) = ω0 · (x× z), where ω0

is a (constant) axial vector of Ω0, (4.235) takes the equivalent form

ω0 ·
(∫

P
x× ρa dv −

∫

P
x× ρb dv −

∫

∂P
x× t da

)

= 0 . (4.236)

Since ω0 is arbitrary, the preceding equation implies that

d

dt

∫

P
x× ρv dv =

∫

P
x× ρb dv +

∫

∂P
x× t da , (4.237)

where use is also made of mass balance. This derivation confirms that the integral form of

angular momentum balance may be deduced by assuming rotational invariance of the energy

equation (under constant angular velocity), exploiting the mass balance law derived from

translational invariance, and appealing to the condition (4.229)1 for the body force.22

The preceding analysis shows hat the integral forms of conservation of mass and balance of

linear and angular momentum are directly deduced from the integral form of energy balance,

the postulate of its form-invariance under superposed rigid-body motions, and the invariance

22At this stage, condition (4.229)1 may be thought of as an implication of invariance of the linear mo-

mentum balance (already derived from translational invariance of the energy balance) under superposed

rigid-body motions.
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conditions (4.195) and (4.205). This remarkable result is referred to as the Green23-Naghdi24-

Rivlin25 theorem.

The Green-Naghdi-Rivlin theorem can be viewed as an implication of the general covari-

ance principle proposed by Einstein. According to this principle, all physical laws should

be invariant under any smooth time-dependent coordinate transformation (including, as a

special case, rigid time-dependent transformations). This far-reaching principle reflects Ein-

stein’s conviction that physical laws are oblivious to specific coordinate systems, hence should

be expressed in a covariant manner, that is, without being restricted by specific choices of

coordinate systems. In covariant field theories, the energy balance equation plays a central

role, as demonstrated by the Green-Naghdi-Rivlin theorem.

4.12 Exercises

4-1. Let A be a smooth surface with outward unit normal n at time t.

(a) Show that for any continuously differentiable vector function w = w(x, t),

d

dt

∫

A
w · n da =

∫

A

[

ẇ + (trL)w − Lw
]

· n da ,

where L is the spatial velocity gradient tensor on A.

(b) Starting from the result of part (a), deduce the alternative identity

d

dt

∫

A
w · n da =

∫

A

[∂w

∂t
+ (divw)v − curl (v ×w)

]

· n da .

(c) Show that for any continuously differentiable scalar function ψ = ψ(x, t),

d

dt

∫

A
ψn da =

∫

A

[

ψ̇n + ψ
{
(trL)n − LTn

}]

da ,

where, again, L is the spatial velocity gradient tensor on A.

4-2. Consider a material curve identified with the point sets C0 and C in the reference and current
configuration, respectively.

(a) Prove that for any smooth vector field u(x, t),

d

dt

∫

C
u · dx =

∫

C
(u̇ + LTu) · dx ,

where L is the velocity gradient tensor.

23Albert E. Green (1912–1999) was a British mechanician.
24Paul M. Naghdi (1924–1994) was an Iranian-born American mechanician.
25Ronald S. Rivlin (1915–2005) was a British-born American mechanician.
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(b) Let C(s) be a curve which is smoothly parametrized by a scalar s ∈ [0, 1] and assume
that C is closed, namely C(0) and C(1) correspond to the same point in space. Use the
result of part (a) to conclude that

d

dt

∫

C
v · dx =

∫

C
a · dx , (†)

where v and a stand for the particle velocity and acceleration vector, respectively. The
integral on the left-hand side of (†) is termed the circulation around C. A motion is
referred to as circulation-preserving if, for every closed material curve, the circulation
is independent of time.

(c) Suppose that the acceleration field is derivable from a potential, namely

a = gradα ,

where α(x, t) is a real-valued function. Prove that the motion is circulation-preserving.
This result is known as Kelvin’s theorem.

4-3. Consider a spatially fixed spherical region P̄ of E3 with radius R and smooth boundary ∂P̄,
and let a body B go through P̄ during its motion.

(a) Let the velocity of the body be of the special form

v =
1

ρ
c ,

where ρ is the mass density in the current configuration and c is a constant vector.
Show that the total mass m of the material particles contained in P̄ does not change
with time.

(b) Let the velocity of the body be given on ∂P̄ by

v =
c

ρ
n ,

where ρ is the mass density of the material, n is the outward unit normal to ∂P̄, and c
is a positive constant. Show that the rate of change of the total mass m contained in P̄
is given by

∂m

∂t
= −4πR2c .

4-4. Consider the motion of a body in which the spatial velocity vector is written with reference
to a fixed orthonormal basis ei as

v = (ax1 − bx2) e1 + (bx1 − ax2) e2 + cx3 e3 ,

where a, b, and c are constants.

(a) Assuming that the mass density ρ0 of the body in the reference configuration at time
t0 = 0 is uniform (that is, ρ0 is independent of position X), determine the mass density
ρ = ρ(x, t) in the current configuration.
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(b) Using the expression for the mass density ρ obtained in part (a), find the material time

derivative ρ̇ and compare it with the spatial time derivative
∂ρ

∂t
. Are they equal? If

yes, provide a physical justification of why this is the case.

4-5. Consider a material for which the Cauchy stress is always of the form

T = −p(ρ)i ,

where the pressure p is a given function of the density ρ. Let a body made of this material
undergo a homogeneous motion such that

x = etX ,

and assume that the mass density at time t = 0 is uniform and equal to ρ0.

(a) Determine the velocity and acceleration of the body.

(b) Deduce the density of the material in the current configuration. Is the density uniform?

(c) Consider a part of the body which in the reference configuration occupies the region P0

defined as

P0 =
{
(X1, X2, X3) ∈ E3 | | X1 |≤ 1 , | X2 |≤ 1 , | X3 |≤ 1

}
.

Compute the kinetic energy for this part of the body at time t.

(d) For the same part of the body as in (d), compute the stress power at time t.

4-6. Recall that the center of mass for a body that occupies a region R at time t is the point
whose position vector x̄ is given by

x̄ =
1

m

∫

R
ρx dv ,

where m is the total mass of the body.

(a) Show that
∫

R
ρ(x − x̄) dv = 0

and ∫

R
ρ(ẋ − ˙̄x) dv = 0 .

(b) Show that Euler’s Laws imply that

F = m¨̄x

and
MG = ḢG ,

where F is the total external force acting on the body at time t, HG is the angular
momentum of the body with respect to its mass center, and MG is the total moment
with respect to the mass center due to the external forces acting on the body.
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(c) In the special case of a body that is undergoing a rigid rotation about the origin of
the fixed Cartesian coordinate system, namely when there exists a proper orthogonal
tensor Q(t) such that

x = QX ,

show that there exists a vector ω(t) such that

v = ω × x .

In addition, show that the angular momentum of the body at time t with respect to
the fixed origin of the coordinate system can be expressed as

H = Jω ,

where J(t) is the inertia tensor defined as

J =

∫

R
ρ(x · x i − x⊗ x) dv .

In the above definition, i stands for the spatial identity tensor.

4-7. Show that the rate of change of the angular momentum in a region P satisfies

d

dt

∫

P
x× ρv dv =

d

dt

∫

P
(x− x̄)× ρv dv + x̄×

∫

P
ρa dv ,

where x̄ is the center of mass in the region P. Provide a physical interpretation of this result.

4-8. Consider two surfaces σ and σ′ passing through a point x in the current configuration of a
body. Also, denote by n and n′ the outward unit normals to σ and σ′, respectively, and let
T be the Cauchy stress tensor at x. Show that

t(n′) · n = t(n) · n′ ,

where t(n) and t(n′) are the stress vectors at x acting on σ and σ′, respectively.

4-9. Let T be the Cauchy stress tensor for a body at a given point x and time t. Suppose that
the stress vector t(n) at x on a surface σ lies in the direction of the outward unit normal n to
σ, while the stress vector t(m) at x on any surface τ with unit normal m vanishes, provided
n ·m = 0. Show that T corresponds to a state of pure tension.

4-10. (a) Let ∂P be any smooth closed surface with outer unit normal n. Use the divergence
theorem to show that ∫

∂P
n da = 0 .

(b) Use the result of part (a) to deduce the Piola identity :

Div (JF−T ) = 0 ; (JF−1
Ai ),A = 0 .
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(c) Show also that

div (J−1FT ) = 0 ; (J−1FAi),i = 0 .

4-11. (a) Let a vector be expressed in the current configuration as v = ṽ(x). The Piola transform

of v is another vector v0 = v̂0(X), defined in the reference configuration by

v0 = JF−1v .

Prove that

Divv0 = J divv ,

where “Div” and “div” are the divergence operators relative to the reference and current
configuration, respectively.

(b) Let a tensor be expressed in the current configuration asT = T̃(x). The Piola transform

of T is another tensor T0 = T̂0(X), defined in the reference configuration by

T0 = JTF−T .

Prove that

DivT0 = J divT .

(c) Provide physical interpretations of the Piola transforms in parts (a) and (b) involving
the fluxes v · n and Tn, when v and T are interpreted as velocity and Cauchy stress,
respectively.

4-12. Starting from the local statement of linear momentum balance (4.100) in referential form,
deduce the corresponding local statement (4.75) in spatial form without directly resorting to
the respective integral statements.

4-13. Starting from the local statement of linear momentum balance (4.100) in referential form,
derive the referential integral statement of mechanical energy balance (4.134) by using local
statements of mass and angular momentum balance.

4-14. Starting from the local form of linear momentum balance in (4.77), deduce directly (i.e.,
without use of integral forms) that angular momentum balance implies symmetry of the
Cauchy stress.

4-15. Starting from the dot-product of the local form of linear momentum balance in spatial (re-
spectively, referential) form with a virtual velocity v∗, derive the statements of the theorem
of virtual power (4.136) and (4.138).

4-16. Let a body B in the current configuration occupy a region R defined with reference to a fixed
orthonormal basis {e1, e2, e3} as

R =
{
(x1, x2, x3) | | x1 |≤ a , | x2 |≤ a , | x3 |≤ b

}
,
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where a and b are positive constants. In addition, let the components of the Cauchy stress
tensor be specified on R at a given time t by

T11 = −T22 = − q

a2
(x21 − x22) ,

T12 =
2q

a2
x1x2 ,

T23 = T31 = T33 = 0 ,

where q is a non-zero constant.

(a) Determine the traction that should be applied on ∂R in order to maintain the above
stress field.

(b) Calculate the resultant force and the resultant moment with respect to the origin acting
on the faces x1 = a and x2 = −a.

(c) Assuming that the body is at rest, show that the above stress field can be maintained
without the application of any body forces.

4-17. Let the components of the Cauchy stress tensor for a body at time t be of the form

[Tij ] =





0 cx3 0
cx3 dx2 −cx1
0 −cx1 0



 ,

where c and d are constants.

(a) Determine the body forces required so that balance of linear momentum is satisfied,
assuming that the body is at rest.

(b) At the location x = 4e1 + 7e2 − 4e3, calculate the stress vector acting on the planar
surface −x1 + 2x2 + 2x3 = 2 and on the spherical surface x21 + x22 + x23 = 81.

4-18. Let the components of the velocity v be

v1 = x1x2x3t , v2 = x3x1t , v3 = x23

and the components of the stress be

[Tij ] =





x21 −x1x2 0
−x2x1 x22−1 x2

0 x2 x23



 ,

in terms of a fixed orthonormal basis {ei} in the given configuration of the body.

(a) Find the components of the body force needed to enforce linear momentum balance of
the body in this configuration.

(b) Find the components of the traction t(n) at a point with coordinates (x1, x2, x3) =
(1, 1, 0) on the plane with outward unit normal having components (n1, n2, n3) =
1√
3
(1, 1, 1).
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(c) Find the maximum shear at (x1, x2, x3) = (1, 0, 0) and the components of the unit
normal to the plane on which the maximum shear is attained.

4-19. Recall that the stress vector t(n) can be decomposed into normal and shearing components,
according to

t(n) = Nn+ Ss , s · s = 1 ,

where
N = t(n) · n

and
S =

∣
∣t(n) − (t(n) · n)n

∣
∣ .

(a) Let Ti and ni be, respectively, the three principal stresses of T and the associated prin-
cipal stress directions. Consider a coordinate system whose orthonormal basis vectors ēi
are parallel to ni. In addition, let the principal stresses Ti be distinct and, without loss
of generality, assume that T1 > T2 > T3. Show that

N = T1n̄
2
1 + T2n̄

2
2 + T3n̄

2
3 ≤ T1

S =
[
T 2
1 n̄

2
1 + T 2

2 n̄
2
2 + T 2

3 n̄
2
3 − (T1n̄

2
1 + T2n̄

2
2 + T3n̄

2
3)

2
]1/2

,

where n is expressed as n = n̄iēi.

(b) Show that

n̄21 =
S2 + (N − T2)(N − T3)

(T1 − T2)(T1 − T3)
,

n̄22 =
S2 + (N − T3)(N − T1)

(T2 − T3)(T2 − T1)
,

n̄23 =
S2 + (N − T1)(N − T2)

(T3 − T1)(T3 − T2)
.

(c) Use the results of part (b) to deduce the relations

S2 +
(

N − T2 + T3
2

)2
≥

(T2 − T3
2

)2
,

S2 +
(

N − T3 + T1
2

)2
≤

(T3 − T1
2

)2
,

S2 +
(

N − T1 + T2
2

)2
≥

(T1 − T2
2

)2
.

Interpret the above inequalities geometrically in the S−N plane (that is, obtain Mohr’s

stress representation).

(d) Determine the maximum shearing stress as a function of the principal stresses and find
the plane on which it acts. Also, determine the normal stress on this plane.

(e) Clearly explain how the results obtained in parts (a)–(d) are affected if: (i) T1 = T2 >
T3, or (ii) T1 = T2 = T3.
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4-20. The components of the Cauchy stress tensor T at a point x and time t are given by

[Tij ] = c





1 1 1
1 1 1
1 1 1



 , (†)

where c > 0 is constant.

(a) Find the three principal invariants of T at (x, t).

(b) Calculate the principal stresses and the associated principal stress directions.

(c) Determine the maximum shear and the plane(s) on which it acts.

(d) Identify the simple stress state described by (†).

4-21. Consider a body at rest so that it occupies the region R at all times.

(a) Show that
∫

∂R
t⊗ x da =

∫

R
(divT⊗ x + T) dv .

(b) Let the mean Cauchy stress tensor T̄ over the region R be defined as

T̄ =
1

vol (R)

∫

R
T dv ,

where vol (R) denotes the volume of the region R. Use the result of part (a) and the
balances of linear and angular momentum to show that

2 vol (R) T̄ =

∫

∂R
(t⊗ x + x⊗ t) da +

∫

R
ρ(b⊗ x + x⊗ b) dv .

The above result is known as Signorini’s theorem. Provide a physical interpretation of
the theorem.

(c) The configuration of a body at rest is depicted in the figure below. In addition, assume
that b = 0, and

t = −p1n on ∂P1 ,

t = −p2n on ∂P2 ,

where p1 and p2 are positive constants and n is the outward unit normal to ∂P1 or ∂P2.

Show that T̄ is a hydrostatic pressure of magnitude

p1 vol (P1) − p2 vol (P2)

vol (P2) − vol (P1)
,

where vol (P1) and vol (P2) are the volumes enclosed by ∂P1 and ∂P2, respectively.

ME185



166 Physical principles

n

∂P2

P2

n

P1

∂P2

4-22. Let T be the Cauchy stress tensor at a point x, and denote its three principal stresses and
the associated principal directions by Ti and ni, respectively. Define the octahedral plane
at x by means of its outward unit normal n̂, given by

n̂ =
1√
3
(n1 + n2 + n3) .

(a) Show that

t(n̂) =
1√
3
(T1n1 + T2n2 + T3n3) .

(b) Let ŝ be a unit vector on the octahedral plane, such that

t(n̂) = Noctn̂ + Soctŝ ,

where Noct and Soct > 0 represent the magnitudes of the normal and the shearing stress,
known as the octahedral normal and octahedral shear stress, respectively. Show that

Noct =
1

3
trT ,

which implies that Noct is a scalar invariant.

(c) Show that the magnitude of the shearing component of t(n̂) can be expressed as

Soct =
1

3

[
(T1 − T2)

2 + (T2 − T3)
2 + (T3 − T1)

2
]1/2

=

[
1

3
(T 2

1 + T 2
2 + T 2

3 ) − 1

9
(T1 + T2 + T3)

2

]1/2

.

Argue from the above result that Soct is also a scalar invariant.

4-23. Consider a body undergoing a motion defined by

x1 = X1 − tX2 ,

x2 = X2 + tX1 ,

x3 = X3 ,

relative to fixed and coincident orthonormal bases {EA} and {ei}.
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(a) Verify that the acceleration experienced by the body vanishes identically.

(b) If the components of the Cauchy stress tensor at time t are given by

[Tij ] =





0 4x23 0
4x23 x1 − 3x2 0
0 0 x1x3



 ,

and the mass density ρ0 in the reference configuration is spatially homogeneous, deter-
mine the components of the body force needed to maintain equilibrium.

(c) Determine the components of the normal traction vector t acting at the point P in
the current configuration with coordinates (1, 1, 1) on the plane that is tangent to the
surface defined by

x31 + x22 + x3 = 3 .

(d) Determine the components of the first Piola-Kirchhoff stress tensor P at time t at the
image of the point P in the reference configuration.

4-24. Suppose that the following data is known on the stress state of a point x in the current
configuration:

(i) The traction t1 acting on a surface with outward unit normal e1 is given by t1 = e1 − e3.

(ii) The traction t2 acting on a surface with outward unit normal e2 is given by t2 = −2e2.

(iii) The pressure p is equal to zero.

Taking into account that {ei} is a right-hand orthonormal basis, use the above data to
determine the following information at x:

(a) All components of the Cauchy stress tensor,

(b) The principal stresses and principal stress directions,

(c) The maximum shearing stress and the plane on which it acts.

4-25. (a) Suppose that at a point P in a continuum there exists an orthonormal set of vectors ni,
i = 1, 2, 3, such that the tractions acting on planes with outward unit normals ni satisfy

t(ni) = −pni , i = 1, 2, 3 .

Show that the Cauchy stress at P is of the form T = −pi, where i is the spatial identity
tensor.

(b) Let mi, i = 1, 2, 3, be three non-coplanar and not necessarily mutually orthogonal unit
vectors. Show that the set of vectors m′

i, i = 1, 2, 3, defined as

m′
1 = m1 ,

m′
2 =

(i−m1 ⊗m1)m2

|(i−m1 ⊗m1)m2|
,

m′
3 =

(i−m1 ⊗m1 −m′
2 ⊗m′

2)m3

|(i−m1 ⊗m1 −m′
2 ⊗m′

2)m3|
,

is orthonormal.
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(c) Use the results of parts (a) and (b) to argue that if there exist at a point P three
non-coplanar and not necessarily mutually orthogonal unit vectors mi, i = 1, 2, 3, such
that the tractions acting on planes with outward unit normals mi satisfy

t(mi) = −pmi , i = 1, 2, 3 ,

then the Cauchy stress at P is of the form T = −pi.

4-26. Let the Cauchy stress tensor T be additively decomposed into two parts according to

T = T′ +
1

3
T̄ i ; Tij = T ′

ij +
1

3
T̄ δij , (†)

so that trT′ = 0. In this case, T′ is called a deviatoric tensor, and 1
3 T̄ i a spherical tensor.

(a) Show that
trT = T̄ .

(b) Argue that for each T, there exist a unique scalar T̄ and a unique tensor T′, such that
(†) hold.

(c) Prove that the tensors T and T′ are co-axial and find the relation between their respec-
tive eigenvalues.

(d) Let the rate of deformation tensor be expressed as

D = D′ + D̄i ; Dij = D′
ij + D̄δij ,

where, again, trD′ = 0. Show that the stress power can be also additively decomposed
according to

T ·D = T′ ·D′ + T̄ D̄ .

4-27. Show that invariance under superposed rigid-body motions of the local statement of mass
balance in the spatial description leads to the conclusion that ρ+ = ρ.

4-28. The Biot stress tensor S(1) is defined as

S(1) =
1

2
(RTP + PTR) ; S

(1)
AB =

1

2
(RiAPiB + PiARiB) ,

where R is the rotation tensor obtained from the polar decomposition of the deformation
gradient tensor F (= RU), and P is the first Piola-Kirchhoff stress tensor. Show that S(1) is
work-conjugate to the right stretch tensor U.

4-29. (a) Let the rate of the deformation gradient F be expressed as

Ḟ = FLR ,

where LR is referred to as the right rate-of-deformation tensor. Starting from the
preceding expression, show that

LR = F−1LF ,

where L is the usual (left) rate-of-deformation tensor. Is LR a referential or spatial
tensor?
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(b) Recall that the second Piola-Kirchhoff stress S and the Lagrangian strain E are work-
conjugate, in the sense that the local (referential) stress power P equals

P = S · Ė .

Taking into account the definition of LR in part (a), show that

P = CS · LR ,

where C is the right Cauchy-Green deformation tensor. The tensorial quantity SM =
CS is called the Mandel stress.

4-30. Recall that, under a superposed rigid-body motion

x+ = Q(t)x + c(t) ,

the Cauchy stress tensor T transforms according to

T+ = QTQT ,

which implies that T is an objective Eulerian tensor.

(a) Show that the material time derivative Ṫ of the Cauchy stress tensor is not an objective
Eulerian tensor.

(b) Let the Jaumann26 (or co-rotational) rate of the Cauchy stress tensor be defined as

◦
T = Ṫ + TW − WT ,

where W is the vorticity tensor. Show that
◦
T is an objective Eulerian tensor.

(c) Let the Cotter-Rivlin (or convected) rate of the Cauchy stress tensor be defined as

△

T = Ṫ + LTT + TL ,

where L is the velocity gradient tensor. Show that
△

T is an objective Eulerian tensor.

(d) Let the Truesdell stress rate
⊲
T be defined as

⊲
T = Ṫ− LT−TLT +T(trD) ,

where L is the spatial velocity gradient and D the rate of deformation tensor. Show that
⊲
T = 1

J FṠFT and conclude from this relation that
⊲
T is an objective Eulerian tensor.

(e) Let the Green-McInnis rate of the Cauchy stress tensor be defined as

�

T = Ṫ − ṘRTT + TṘRT ,

whereR is the rotation tensor obtained from the polar decomposition of the deformation

gradient F. Show that
�

T is an objective Eulerian tensor.

26Gustav Jaumann (1863-1924) was an Austrian physicist.

ME185



170 Physical principles

(f) Argue that the any Eulerian tensor of the form

α
◦
T + (1 − α)

△

T , α ∈ R

is also objective.

(g) Use the result in part (f) to directly conclude that the Oldroyd rate of the Cauchy stress
tensor, defined as

▽

T = Ṫ − LT − TLT ,

is objective.

4-31. Recall that the heat flux h = h(x, t ; n) through a surface with outward unit normal n at a
point x has been shown to satisfy the condition

h(x, t ; n) = − h(x, t ; −n) ,

for any given time t. Use the standard Cauchy tetrahedron argument to show that there
exists a vector q = q(x, t), such that

h = q · n .

Provide full details of the derivation, including all assumptions on smoothness of the various
fields that appear in your arguments.

4-32. Starting from the local statement of the energy equation in spatial form, as in (4.164), deduce
directly its referential counterpart in the form

ρ0ǫ̇ = P · Ḟ+ ρ0r −Divq0 ,

where q0 is the Piola transform of q.

4-33. Let P be a fixed region in 3-dimensional space occupied by a continuum of mass density ρ
and velocity v at some time t.

(a) Starting from an integral statement of mass balance over the region P, employ the
Reynolds transport theorem to show that

∂

∂t

∫

P
ρ dv +

∫

∂P
ρv · n da = 0 ,

where n is the outward unit normal to the boundary ∂P of the region P.

(b) Assume that the velocity of the continuum is given as

v = x1e1 + 2x2e2 + 3x3e3 ,

where xi, i = 1, 2, 3, are the components of the position vector x of a point relative
to a fixed orthonormal basis {ei, i = 1, 2, 3}. Further, assume that the mass density ρ
of the continuum is spatially homogeneous, that is, ρ = ρ(t). Invoke mass balance to
determine the mass density ρ(t), as a function of the referential mass density ρ0 at time
t = 0.
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(c) Let the continuum be a unit cube, as in the figure below.

0

3

1

2

Use the result of part (b) to determine the rate of change of the mass contained in the
fixed region P.

(d) Invoke again part (b) to determine the flux of mass through the six faces of the cube.
Is your result consistent with the identity derived in part (a)?

4-34. (a) Consider a continuum that is in equilibrium at the absence of body forces and occupies

a region R at time t. Show that the mean Cauchy stress T̄, defined as T̄ =
1

V

∫

RT dv

in terms of the volume V of R, is related to the surface traction t on the boundary ∂R
according to

V T̄ =

∫

R
t⊗ x da . (†)

(b) Consider a collection of n particles in equilibrium under the influence of external forces
Fα
e , α = 1, 2, . . . , n, and internal (i.e., interaction) forces Fα

i , α = 1, 2, . . . , n. Show that

N∑

α=1

[Fα
e ⊗ xα + Fα

i ⊗ xα] = 0 , (‡)

where xα, α = 1, 2, . . . , n are the position vectors of the particles.

(c) Suppose that one wishes to approximate the continuum of part (a) with the collection
of particles in part (b). Within such an approximation, which terms of the equations
(†) and (‡) correspond to each other?

4-35. Recall the local statement of mass balance in the form

ρ̇+ ρ divv = 0 ,

where ρ is the mass density and v is the velocity vector.

(a) Show that mass balance may be alternatively stated in a so-called conservative form as

∂ρ

∂t
+ div (ρv) = 0 .

In what sense may the preceding form be interpreted as “conservative”?
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(b) Recall that, in the absence of volumetric heat supply, the energy equation is written as

ρε̇ = T ·D− divq ,

where ε is the internal energy per unit mass, T is the Cauchy stress tensor, D is the
rate-of-deformation tensor, and q is the heat flux vector.

Use the result of part (a) to establish that the preceding equation may be recast in the
form

∂

∂t
(ρε) + div (ρεv) = T ·D− divq

(c) Starting from the result of part (b) and assuming the vanishing of any body forces,
invoke linear momentum balance and use the result of part (a) to argue that the energy
equation is also expressible in conservative form as

∂

∂t
(ρE) + div (ρEv + q−Tv) = 0 .

Here, E is the total internal energy per unit mass, defined as E = ε+ 1
2v · v.

4-36. Let a body in the current configuration occupy a region R, and suppose that the components
of the Cauchy stress tensor T with respect to a fixed orthonormal basis {e1, e2, e3} are of
the form

[Tij ] =





0 0 ax2 + x21x2
0 0 bx1 − x1x

2
2

ax2 + x21x2 bx1 − x1x
2
2 0



 ,

where a and b are positive constants to be determined. In addition, assume that the body is
at rest.

(a) Conclude that balance of linear momentum is satisfied in the absence of body forces.

(b) Let R be defined as

R =
{
(x1, x2, x3) ∈ E3 | | x1 |≤ w , | x2 |≤ h , 0 ≤ x3 ≤ l

}
,

where w, h and l are positive constants. Determine a and b by requiring that the faces
x1 = ±w and x2 = ±h be traction-free.

(c) Use the component form of T obtained in part (ii) to determine the resultant forces
and moments acting on the faces x3 = 0 and x3 = l. Also, exhibit these resultants on
a sketch of R.

4-37. Derive the referential expressions (4.177) and (4.178) from the corresponding spatial expres-
sions (4.174) and (4.176).
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Chapter 5

Infinitesimal Deformations

The development of kinematics and kinetics presented up to this point does not require

any assumptions on the magnitude of the various measures of deformation. In many real-

istic circumstances, solids may undergo “small” (or “infinitesimal”) deformations. In these

cases, the mathematical representation of kinematic quantities and the associated kinetic

quantities, as well as the balance laws, may be substantially simplified.

In this chapter, the special case of infinitesimal deformations is discussed in detail. Pre-

liminary to this discussion, it is instructive to formally define the meaning of “small” or

“infinitesimal” changes of a function. To this end, consider first a real-valued function

f = f(x) of a real variable x, which is assumed to be twice differentiable. To analyze this

function in the neighborhood of x = x0, one may use a Taylor series expansion at x0 with

remainder, in the form

f(x0 + v) = f(x0) + vf ′(x0) +
v2

2!
f ′′(x̄) , (5.1)

where v is a change to the value of x0 and x̄ ∈ (x0, x0 + v). Denoting by ε the magnitude of

the difference between x0 + v and x0, that is, ε = |v|, it follows that as ε → 0 (therefore, as

v → 0), the scalar f(x0 + v) is satisfactorily approximated by the linear part of the Taylor

series expansions in (5.1), namely

f(x0 + v)
.
= f(x0) + vf ′(x0) . (5.2)

Recalling the expansion (5.1), one may say that ε = |v| is “small”, when the term
v2

2!
f ′′(x̄)

can be neglected in this expansion without appreciable error, that is, when
∣
∣
∣
∣

v2

2!
f ′′(x̄)

∣
∣
∣
∣
≪ |f(x0 + v)| , (5.3)
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assuming that f(x0 + v) 6= 0.

5.1 The Gâteaux differential

Linear expansions of the form (5.2) can be readily obtained for a general class of functions

using the Gâteaux differential. Specifically, given F = F(X), where F is a sufficiently smooth

real-, vector- or tensor-valued function of a real, vector or tensor variable X, the Gâteaux

differential DF(X0,V) of F at X = X0 in the direction V is defined as

DF(X0,V) =

[
d

dω
F(X0 + ωV)

]

ω=0

, (5.4)

where ω is a scalar. Then, it can be shown that

F(X0 +V) = F(X0) +DF(X0,V) + o(|V|2) , (5.5)

where the term o(|V|2) satisfies

lim
|V|→0

o(|V|2)
|V| = 0 . (5.6)

The linear part L[F;V]X0
of F at X0 in the direction V is then defined as

L[F;V]X0
= F(X0) +DF(X0,V) . (5.7)

Example 5.1.1: Gâteaux differentials of simple functions
Let F(X) = f(x) = x2. Using the definition in (5.4),

Df(x0, v) =

[
d

dω
f(x0 + ωv)

]

ω=0

=

[
d

dω
(x0 + ωv)2

]

ω=0

=

[
d

dω
(x20 + 2x0ωv + ω2v2)

]

ω=0

=
[
2x0v + 2ωv2

]

ω=0

= 2x0v .

Hence,
L[f ; v]x0

= x20 + 2x0v .
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(a)(b) Let F(X) = φ(x) = x · x. Using, again, the definition in (5.4), it follows that

Dφ(x0,v) =

[
d

dω
φ(x0 + ωv)

]

ω=0

=

[
d

dω

{

(x0 + ωv) · (x0 + ωv)
}]

ω=0

=

[
d

dω
(x0 · x0 + 2ωx0 · v + ω2v · v)

]

ω=0

= 2x0 · v .

This means that
L[φ;v]x0

= x0 · x0 + 2x0 · v .

(c) Let F(X) = T(x) = x⊗ x. Using, one more time, the definition in (5.4),

DT(x0,v) =

[
d

dω
T(x0 + ωv)

]

ω=0

=

[
d

dω

{

(x0 + ωv)⊗ (x0 + ωv)
}]

ω=0

=

[
d

dω

{

x0 ⊗ x0 + ω(x0 ⊗ v + v ⊗ x0) + ω2v ⊗ v
}]

ω=0

= [(x0 ⊗ v + v ⊗ x0) + 2ωv ⊗ v]ω=0

= x0 ⊗ v + v ⊗ x0 .

It follows that
L[T;v]x0

= x0 ⊗ x0 + x0 ⊗ v + v ⊗ x0 .

5.2 Consistent linearization of kinematic and kinetic

variables

Preliminary to the ensuing development, assume that the two orthonormal bases {EA} and

{ei} associated respectively with the reference and current configuration are coincident. In

this case, the position vector x of a material point P in the current configuration can be

written as the sum of the position vector X of the same point in the reference configuration

plus the displacement u of the point from the reference to the current configuration, that is,

x = X+ u , (5.8)

as shown in Figure 5.1. As usual, the displacement vector field can be expressed equivalently

in referential or spatial form as

u = û(X, t) = ũ(x, t) . (5.9)
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xX
RR0

u

{EA} = {ei}

Figure 5.1. Displacement vector u of a material point with position X in the reference config-

uration.

It follows from (3.34) that the deformation gradient can be written as

F =
∂χ

∂X
=

∂(X+ û)

∂X
= ı+

∂û

∂X
= ı+H , (5.10)

where H ∈ L(TxR, TXR0) is the (relative) referential displacement gradient tensor defined

by

H =
∂û

∂X
. (5.11)

Clearly, H quantifies the deviation of F from the identity tensor, see, again, Exercise 3-10.

Recalling the discussion in Section 5.1, a linearized counterpart of a given kinematic

measure is obtained by first expressing the kinematic measure in terms of H as F̄(H) and,

then, by expanding F̄(H) about the reference configuration, where H = 0. This leads to

F̄(H) = F̄(0) +DF(0,H) + o(|H|2) , (5.12)

where, as usual, |H| = (H · H)1/2. Taking into account (5.7) and (5.12), the linear part

L(F;H)0 of F in the direction of H about the reference configuration is given by

L(F;H)0 = F̄(0) +DF(0,H) . (5.13)

A suitable global measure of the magnitude for the deviation of F from the identity can

be defined as

ε = ε(t) = sup
X∈R0

|H(X, t)| , (5.14)

where “sup” denotes the least upper bound of |H(X, t)| over all points X in the reference

configuration at time t. Now, one may say that the deformations are small (or infinitesimal)

at a given time t if ε is small enough so that the term o(|H|2) can be neglected when compared

with F̄(H).
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Next, proceed to obtain infinitesimal counterparts of some standard kinematic fields,

starting with the deformation gradient F. To this end, recall (5.10) and write F = F̄(H) =

I+H. Then, the Gâteaux differential of F in the direction H is

DF(0,H) =

[
d

dω
F̄(0+ ωH)

]

ω=0

=

[
d

dω
(I+ ωH)

]

ω=0

= H . (5.15)

Hence, the linear part of F in H is

L[F;H]0 = F̄(0) +DF(0,H) = I+H . (5.16)

Effectively, Equation (5.16) shows that the linear part of F in H is F itself, which should be

also obvious from equation (5.10).

Recall next that FF−1 = i, and take the linear part of both sides in the direction of H.

This leads to

L[FF−1;H]0 = F̄(0)F̄−1(0) +D(FF−1)(0,H) = L[i;H]0 = i , (5.17)

where, using (5.15) and the product rule,

D(FF−1)(0,H) = DF(0,H)F̄−1(0) + F̄(0)DF−1(0,H) = H+DF−1(0,H)

= Di(0,H) = 0 .
(5.18)

The preceding equation implies that

DF−1(0,H) = −H . (5.19)

Hence, the linear part of F−1 at H = 0 in the direction H is

L[F−1;H]0 = F̄−1(0) +DF−1(0,H) = I−H . (5.20)

Next, consider the linear part of the spatial displacement gradient tensor grad ũ. First,

observe that, using the chain rule,

grad ũ = (Grad û)F−1 = (F− ı)F−1 = i− F−1 , (5.21)

therefore

grad ũ = gradu(H) = i− (I+H)−1 . (5.22)
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Taking into account (5.19) and (5.21), this implies

D(gradu)(0,H) = −DF−1(0,H) = H . (5.23)

As a result,

L[gradu;H]0 = gradu(0) +D(gradu)(0,H) = 0+H = H . (5.24)

The last result shows that the linear part of the spatial displacement gradient grad ũ coincides

with the referential displacement gradient Grad û(= H). This, in turn, implies that, within

the context of infinitesimal deformations, there is no difference between the partial derivatives

of the displacement u with respect to X or x. This further implies that the distinction

between the spatial and referential description of deformation-related quantities becomes

immaterial in the case of infinitesimal deformations. For this reason, the use of separate

orthonormal bases {EA} and {ei} ceases to be meaningful, hence, for concreteness, all vectors

and tensors under infinitesimal deformations are referred to a single basis chosen to be {ei}.
To determine the linear part of the right Cauchy-Green deformation tensor C in (3.50),

write

C = C̄(H) = (I+H)T (I+H) = I+H+HT +HTH . (5.25)

Then,

DC(0,H) =

[
d

dw
C̄(0+ wH)

]

w=0

=

[
d

dw

{
I+ w(H+HT ) + w2HTH

}
]

w=0

=
[
H+HT + 2wHTH

]

w=0

= H+HT . (5.26)

Consequently, the linear part of C at H = 0 in the direction H is

L[C;H]0 = C̄(0) +DC(0,H) = I+ (H+HT ) . (5.27)

Likewise, the left Cauchy-Green deformation B in (3.57) is written as

B = B̄(H) = (I+H)(I+H)T = I+H+HT +HHT , (5.28)
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hence,

DB(0,H) =

[
d

dw
B̄(0+ wH)

]

w=0

=

[
d

dw

{
I+ w(H+HT ) + w2HHT

}
]

w=0

=
[
H+HT + 2wHHT

]

w=0

= H+HT . (5.29)

therefore,

L[B;H]0 = B̄(0) +DB(0,H) = i+ (H+HT ) . (5.30)

It is clear from (5.27) and (5.30) that the symmetry of C and B is preserved in the respective

linear parts. The same equations imply that the linear parts of C and B with respect to the

reference configurations are equal, since the two identity tensors i and I become identical

when the basis vectors {ei} and {EA} coincide.

Recalling (3.69) and using (5.26), it can be immediately concluded that the linear part

of the Lagrangian strain tensor E is

L [E;H]0 =
1

2
(H+HT ) . (5.31)

At the same time, the Eulerian strain tensor e in (3.72) can be written as

e = ē(H) =
1

2

[
i− F̄−T (H)F̄−1(H)

]
, (5.32)

hence, with the aid of (5.19) and the product rule, its Gâteaux differential is given becomes

De(0,H) = −1

2

[
DF−T (0,H)F̄−1(0) + F̄−T (0)DF−1(0,H)

]

= −1

2

[
DF−T (0,H) +DF−1(0,H)

]
=

1

2
(H+HT ) , (5.33)

given that F̄−1(0) = I. This means that the linear part of e is equal to

L[e;H]0 = ē(0) +De(0,H) =
1

2
(H+HT ) . (5.34)

It is clear from (5.31) and (5.34) that the linear parts of the Lagrangian and Eulerian strain

tensors coincide. Hence, under the assumption of infinitesimal deformations, the distinction

between the two strains ceases to exist and one simply writes that

L[E;H]0 = L[e;H]0 =
1

2
(H+HT ) = ε , (5.35)
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where ε is the classical infinitesimal strain tensor, with components εij =
1
2
(ui,j + uj,i).

Proceed next with the linearization of the right stretch tensorU. To this end, recall (3.90)

and use (5.25) to write

U2 = C = I+H+HT +HTH , (5.36)

so that, with the aid of (5.26) and the product rule,

DU2(0,H) = DU(0,H)Ū(0) + Ū(0)DU(0,H) = 2DU(0,H) = H+HT , (5.37)

since Ū(0) = I. It follows from (5.37) that

L [U;H]
0

= Ū(0) +DU(0,H) = I+
1

2
(H+HT ) . (5.38)

Repeating the procedure used earlier in this section to determine the Gâteaux differential

of F−1, one easily finds that the corresponding differential for U−1 is

DU−1(0,H) = −1

2
(H+HT ) , (5.39)

therefore

L
[
U−1;H

]

0
= I− 1

2
(H+HT ) . (5.40)

It is now possible to determine the linear part of the rotation tensor R, written, with the

aid of (3.86), as

R = R̄(H) = F̄(H)Ū−1(H) , (5.41)

by first obtaining the Gâteaux differential of R as

DR(0,H) = DF(0,H)Ū−1(0) + F̄(0)DU−1(0,H) = DF(0,H) +DU−1(0,H)

= H− 1

2
(H+HT ) =

1

2
(H−HT ) , (5.42)

where use is made of (5.15) and (5.39). Then, one may write

L [R;H]
0

= R̄(0) +DR(0,H) = I+
1

2
(H−HT ) . (5.43)

When H is small, the skew-symmetric tensor

ω =
1

2
(H−HT ) (5.44)

is called the infinitesimal rotation tensor and has components ωij = 1
2
(ui,j − uj,i). In this

case, Equations (5.35) and (5.44) imply that

H = ε+ ω . (5.45)
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Next, derive the linear part of the Jacobian J of the deformation gradient. To this end,

recall (2.52) and observe that

D(detF)(0,H) =

[
d

dω
det F̄(ωH)

]

ω=0

=

[
d

dω
det(ı+ ωH)

]

ω=0

=

[
d

dω
det

{[

H− (− 1

ω
)ı

]}]

ω=0

=

[
d

dω

{

ω3

[

−(− 1

ω
)3 + IH(−

1

ω
)2 − IIH(−

1

ω
) + IIIH

]}]

ω=0

=

[
d

dω

(
1 + ωIH + ω2IIH + ω3IIIH

)
]

ω=0

= IH = trH , (5.46)

where IH, IIH, and IIIH are the three principal invariants of H. This, in conjunction

with (5.35), leads to

L[detF;H]0 = det F̄(0) +D(detF)(0,H) = 1 + trH = 1 + tr ε . (5.47)

The balance laws themselves are subject to linearization. For instance, the referential

statement of mass balance (4.33) may be linearized to yield

L[ρ0;H]0 = L[ρJ ;H]0 . (5.48)

This means that

ρ0 = ρ̄(0)J̄(0) +Dρ(0,H)J̄(0) + ρ̄(0)DJ(0,H) . (5.49)

Since conservation of mass is assumed to hold in all configurations (therefore also in the

reference configuration), it follows that

ρ0 = ρ̄(0)J̄(0) = ρ̄(0) , (5.50)

since J̄(0) = det ı = 1. Thus, Equation (5.49), with the aid of (5.46) results in

Dρ(0,H) + ρ0 tr ε = 0 , (5.51)

hence,

Dρ(0,H) = −̺0 tr ε . (5.52)
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The linear part of the mass density relative to the reference configuration now takes the form

L[ρ;H]0 = ρ̄(0) +Dρ(0,H) = ρ0(1− tr ε) . (5.53)

Equation (5.53) reveals that the linearized mass density does not coincide with the mass

density of the reference configuration.

The linearization of linear momentum balance will be discussed in Section 6.6.

5.3 Exercises

5-1. Find the linear part of the unit vector
x

|x| at x0 in the direction v.

5-2. Recall that an infinitesimal material line element dX in the reference configuration of a body
can be written as

dX = M dS ,

in terms of the unit vector M in the direction of dX. Due to the motion, the above line
element is mapped to dx in the current configuration, such that

dx = m ds ,

where m is a unit vector in the direction of dx.

(a) Show that the linear part of ds/dS with respect to the reference configuration is given
by

L[ds/dS ; H]0 = 1 + M · εM ,

where ε = 1
2(H + HT ) and H is the relative displacement gradient tensor.

(b) Show that the linear part of m with respect to the reference configuration is given by

L[m ; H]0 =
[
(1 − M · εM)I + H

]
M .

5-3. Recall that an infinitesimal material area element dA with outer unit normal N in the refer-
ence configuration is mapped to an infinitesimal area element da with outer unit normal n
in the current configuration, such that

nda = JF−TNdA ,

where F is the deformation gradient tensor and J = detF.

(a) Show that the linear part of da/dA with respect to the reference configuration is given
by

L[da/dA ; H]0 = 1 + tr ε − N · εN ,

where ε = 1
2(H + HT ) and H is the relative displacement gradient tensor.
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(b) Show that the linear part of n with respect to the reference configuration is given by

L[n ; H]0 =
[
(1 + N · εN)I − HT

]
N .

5-4. Recall that the referential displacement gradient tensor is given by

H =
∂u

∂X
= F − I

and define the tensors ε and ω as

ε =
1

2
(H+HT ) , ω =

1

2
(H−HT ) .

(a) Show that the Lagrangian strain tensor E can be expressed as

E = ε +
1

2
(ε2 + εω − ωε − ω

2) . (†)

(b) Discuss how E, ε and ω transform under a rigid motion superposed on the continuum,
namely when

x+ = Qx+ c ,

where Q(t) is a proper orthogonal tensor-valued function of t and c(t) is a vector-valued
function of t.

(c) Indicate the reduction that takes place in the formula (†) in the context of infinitesimal
kinematics. Are the invariance requirements of part (b) satisfied in the infinitesimal
theory?

5-5. Consider a two-dimensional body which undergoes the homogeneous deformation illustrated
in the figure.

1

1 u1

u2

E1, e1

E2, e2
R0 R

(a) Determine the components of the deformation gradient F, the Lagrangian strain E, and
the stretch λ along the direction M = 1√

2
(E1 + E2) in terms of the displacements u1

and u2.
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(b) Determine the components of the linearized counterparts of the same kinematic quan-
tities as in part (a), again in terms of the displacements u1 and u2.

(c) Compare the results in parts (a) and (b) and argue that they are consistent with the
linearization of functions in two variables (here, u1 and u2).

5-6. Let (E1,E2) be a pair of orthonormal vectors in E3 and recall that, under the influence of the
deformation gradient F, they transform to a pair (FE1,FE2), so that the angle θ between
the transformed vectors satisfies the relation

cos θ =
FE1

|FE1|
· FE2

|FE2|
.

Using consistent linearization in the direction H, show that the linear part of cos θ, as defined
above, equals the engineering shear strain γ12 = u1,2 + u2,1.
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Chapter 6

Constitutive Theories

The balance laws for thermomechanical processes (those in which there is interaction between

mechanical energy and heating) furnish a total of 8 equations (one from balance of mass,

three each from linear and angular momentum balance, and one from balance of energy).

These are used to determine 17 unknowns, which are the mass density ρ, the position x (or

velocity v), the stress tensor (e.g., T, with 9 unknowns), the temperature T , and the heat

flux vector q. Clearly, without additional equations relating these unknowns this system

lacks closure, that is, it cannot lead to a determinate solution. Closure is established by

constitutive equations, which relate the stress and heat flux to kinematic variables, mass

density, and temperature.

In the special case of purely mechanical processes , where all thermal effects are neglected

(that is, q = 0, r = 0), the balance of energy in (4.164) implies that the stress power balances

the rate of change of the internal energy and does not determine (or even affect) the stress.

Therefore, there are 7 equations used to determine 13 unknowns, which implies that closure

is effected by a constitutive equation for stress alone.

Before introducing specific constitutive equations, it is important to emphasize that the

distinction between fluids and solids as continuous media is neither sharp nor uncontested.

It is reasonable to state that fluids generally undergo deformation that cannot be practically

measured relative to a reference configuration, while solids do. However, even this statement

is relative. Indeed, it is entirely possible to envision a body whose deformation at some

timescale fits the preceding attribute of a fluid but in another (much shorter) can be safely

considered as a solid. Tectonic motions of the earth are a good such example, as they can

be thought of as fluid in a geologic time-scale (in the order of millions of years), but solid

in much shorter time scales. In a laboratory setting, the so-called pitch drop experiments
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demonstrate that the distinction between highly viscous liquid and solid materials forced to

“flow” under gravity is not possible without specifying the time-range of observation.

6.1 General requirements

For purely mechanical processes, a reasonably general constitutive equation for the Cauchy

stress at a point x at time t may be written as

T(X, t) = T̂
(
H
τ≤t

[F(X, τ)], H
τ≤t

[GradF(X, τ)], . . . , ρ
)

(6.1)

or, in rate form, as

Ṫ(X, t) = ˆ̇T
(
( H
τ≤t

[F(X, τ)], H
τ≤t

[GradF(X, τ)], . . . ,T, ρ
)
. (6.2)

In Equation (6.1), T̂ is a (Cauchy) stress response function, while correspondingly in Equa-

tion (6.2), ˆ̇T is a (Cauchy) stress-rate response function. Also, the terms H
τ≤t

[F(X, τ)] and

H
τ≤t

[GradF(X, τ)] represent the total history of the deformation gradient and the referential

gradient of the deformation gradient up to (and including) time t for a given material point

occupying the pointX in the reference configuration. Furthermore, Equations (6.1) and (6.2)

may be written in spatial form as

T(x, t) = T̂
(
H
τ≤t

[F(xτ , τ)], H
τ≤t

[gradF(xτ , τ)], . . . , ρ
)

(6.3)

or, in rate form, as

Ṫ(x, t) = ˆ̇T
(
( H
τ≤t

[F(xτ , τ)], H
τ≤t

[gradF(xτ , τ)], . . . ,T, ρ
)
, (6.4)

where xτ is the position at time τ of a particle situated at x at time t. Clearly, a special case

of the preceding constitutive laws arises when the stress or stress rate at time t depend only

on variables at the same time. Analogous functional representations may be formulated for

other stress measures, such as P and S.

The constitutive equations (6.1-6.4) are especially convenient because the stress (or stress

rate) is given as an explicit function of the quantities on which it depends. More generally,

one may postulate implicit constitutive laws in the form

Ĝ
(
T, H

τ≤t
[F(X, τ)], H

τ≤t
[GradF(X, τ)], . . . , ρ

)
= 0 , (6.5)
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where Ĝ is a tensor-valued function. The Cauchy stress can be extracted from (6.5) under

regularity conditions set by the implicit function theorem.

For thermomechanical processes the preceding constitutive laws may be amended to

include dependence on temperature and an additional constitutive law is introduced for the

determination of heat flux in terms of the the now expanded set of independence variables.

A number of restrictions may be placed on the preceding equations on mathematical or

physical grounds. Some of these restrictions appear to be universally adopted, while others

are relaxed for certain constitutive laws. Five of these restrictions are reviewed below.

First, constitutive laws are expected to be dimensionally consistent. This simply means

that the physical dimensions of the left- and right-hand sides in (6.1) or (6.2) must be the

same.

Example 6.1.1: Dimensional consistency of a simple constitutive law for stress
Consider the constitutive law of the form

T = αB ,

where α is a material parameter. Dimensional consistency necessitates that α have physical dimensions of stress
(or [ML−1

T
−2] in terms of mass M, length L, and time T), since B is dimensionless.

Second, constitutive laws need to tensorially consistent in their representation. This

means that the right-hand sides of (6.1) and (6.2) should be spatial tensor-valued functions

(hence, resolved naturally on the basis {ei⊗ ej}) to maintain consistency with the left-hand

sides (that is, T and Ṫ), which are, by definition, spatial tensors.

Example 6.1.2: Tensorial consistency of a simple constitutive law for stress
Consider the constitutive law of the form

T = βF ,

where β is a material parameter. Tensorial consistency would disallow this constitutive law because F ∈
L(TXR0, TxR) is a two-point tensor, while T ∈ L(TxR, TxR) is a spatial tensor.

A third restriction, often referred to as determinism, requires that the stress at time t be

prescribed as a function of quantities at time t or earlier (but not later) times. Clearly, the

constitutive equations (6.1-6.4) satisfy the restriction of determinism.

A fourth restriction is placed by locality , that is, the assumption that the stress at a point

should only depend on quantities defined at that point without any dependence on other

points.
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Example 6.1.3: Two non-local constitutive laws for stress

(a) The constitutive law

T(x, t) = γ

∫

Pδ(x)

e(y, t) dv

where γ is a material parameter and Pδ(x) is a sphere of radius δ > 0 centered at x, violates locality.
Still, such a constitutive law may be meaningful for some special class of materials.

(b) The constitutive law
P = δ(GradF)l

or, in component form,
PiA = δFiA,BlB = δxi,ABlB

is non-local, although GradF itself is a local function. This is because, assuming that δ has units of
stress, dimensional consistency mandates that the vector-valued function l have units of length. This
means that the stress at a point depends on a material parameter l associated with this point, but
prescribed (say, by experiment) over a distance surrounding this point.

The fifth source of restrictions is the postulate of invariance under superposed rigid-body

motions, which is most often assumed to apply to constitutive laws. According to this

postulate, the response functions T̂ and ˆ̇T in (6.1) and (6.2) must remain unaltered under

superposed rigid-body motions. This means that

T+(x+, t) = T̂
(
H
τ≤t

[F+(X, τ)], H
τ≤t

[GradF+(X, τ)], . . . , ρ+
)

(6.6)

and, likewise,

Ṫ+(x+, t) = ˆ̇T
(
( H
τ≤t

[F+(X, τ)], H
τ≤t

[GradF+(X, τ)], . . . ,T+, ρ+
)
. (6.7)

Note that both the stress T in (6.6) and the stress rate Ṫ in (6.7) are transformed to their

counterparts under superposed rigid-body motions, and all the arguments in the response

functions T̂ and ˆ̇T are likewise transformed. However, invariance of the constitutive laws

under superposed rigid-body motions means that the response functions themselves remain

unchanged, which is indeed the case in (6.6) and (6.7).

Example 6.1.4: Invariance of a simple constitutive law for stress
In this example, the postulate of invariance under superposed rigid-body motions is explored for a special case
of (6.1), in which

T = T̂(F) . (6.8)

Here, invariance necessitates that
T+ = T̂(F+) . (6.9)
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Taking into account (3.178), (4.199), and (6.8), equation (6.9) leads to

QT̂(F)QT = T̂(QF) , (6.10)

for all proper orthogonal tensors Q. Clearly, equation (6.10) places a restriction on the function T̂. The
ramifications of this restriction will be discussed in detail in Section 6.4.

Example 6.1.5: Invariance of a simple constitutive law for stress rate
Here, a special case of the constitutive law (6.2) is considered, in which

Ṫ = ˆ̇T(F) . (6.11)

Now, invariance under superposed rigid-body motions implies that

Ṫ+ = ˆ̇T(F+) . (6.12)

Recalling (3.178) and (4.199), it follows that

˙
QTQT = ˆ̇T(QF) , (6.13)

which, with the aid of (6.11), may be expanded to

Q̇TQT +Q ˆ̇T(F)QT +QTQ̇T = ˆ̇T(QF) , (6.14)

or, alternatively, to

ΩT+ +Q ˆ̇T(F)QT −T+Ω = ˆ̇T(QF) , (6.15)

where use is also made of (3.182). Equation (6.14) places an untenable restriction on the response function ˆ̇T

owing to the explicit presence of the variable T+, which is independent of ˆ̇T. Therefore, the constitutive
law (6.11) violates invariance under superposed rigid-body motions.

One way to enforce invariance is to revise (6.11) in a manner that eliminates the additional stress terms
that appear on the left-hand side of (6.14) or (6.15). To this end, one may postulate a constitutive law of the
form

Ṫ+TW −WT = ˆ̇T(F) , (6.16)

where the two added terms on the left-hand side of (6.16) are reverse-engineered so that, under superposed
rigid-body motions, they cancel out the two stress terms on the left-hand side of (6.15). Indeed, in this case
and with the aid of (3.208) and (4.199), invariance under superposed rigid-body motions implies that

ΩT+ +Q ˆ̇T(F)QT −T+Ω+T+W+−W+T+

= Q ˆ̇T(F)QT +T+(W+ −Ω)− (W+ −Ω)T+

= Q ˆ̇T(F)QT + (QTQT )(QWQT )− (QWQT )(QTQT )

= Q(Ṫ+TW −WT)QT = ˆ̇T(QF) , (6.17)

hence, with reference to (6.16)

Q ˆ̇T(F)QT = ˆ̇T(QF) . (6.18)
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This equation places a meaningful restriction on the response function ˆ̇T, akin to the one placed on T̂ in (6.10).
The stress-rate quantity

◦
T = Ṫ+TW −WT (6.19)

is called the Jaumann1rate of the Cauchy stress tensor and is one of many possible objective rates of the
Cauchy stress that may be used to circumvent the problem posed by invariance in constitutive equations of the
type (6.2). Some other such objective rates are introduced in Exercise 4-30.

Invariance under superposed rigid-body motions may be also used to outright exclude

certain functional dependencies in the constitutive laws for stress.

Example 6.1.6: Two constitutive reductions due to invariance under super-
posed rigid-body motions

(a) Consider a constitutive law for stress in the form

T = T̂(x) , (6.20)

namely assume that the Cauchy stress tensor depends explicitly on the current position x, rather than
implicitly through the dependence of, say, ρ or F on it. Invariance of T̂ under superposed rigid-body
motions implies that

T+ = T̂(x+) . (6.21)

Hence, upon recalling (3.179) and (6.20), equation (6.21) leads to

QT̂(x)QT = T̂(Qx+ c) , (6.22)

for all proper orthogonal tensors Q(t) and vectors c(t). Now, choose a constant superposed rigid-body
translation, which amounts to setting Q = i and c = c0, where c0 is constant. It follows from (6.22)
that

T̂(x) = T̂(x+ c0) . (6.23)

However, given that c0 is arbitrary, the condition in (6.23) can be met only if T̂ is altogether explicitly
independent of x.

(b) Assume here a constitutive law of the form

T = T̂(v) , (6.24)

that is, let the stress be an explicit function of the velocity. This violates invariance under superposed
rigid-body motions. Indeed, in this case, invariance implies that

T+ = T̂(v+) , (6.25)

which readily translates, with the aid of (3.184)1, (4.199), and (6.24) to

QT̂(v)QT = T̂(ΩQx+Qv + ċ) . (6.26)

1Gustav Jaumann (1863–1924) was an Austrian physicist.
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Now, choose a rigid-body translation at constant velocity, such that Q(t) = i, Ω(t) = 0 and c(t) = c0t,
where c0 is, again, a constant. It follows that for this particular choice of a superposed rigid-body
motion, equation (6.26) reduces to

T̂(v) = T̂(v + c0) , (6.27)

which implies that the velocity v cannot be an explicit argument in T̂.

6.2 Inviscid fluid

All bodies, both fluid and solid, resist, to some extent, sliding of one part relative to another

by developing tangential forces on the opposing surfaces of the two parts, see Figure 6.1. In

a typical fluid, it is the interaction between its molecules that is primarily responsible for

these frictional forces.

Figure 6.1. Schematic of tractions resisting the sliding of a continuum.

In an inviscid fluid , the frictional forces are negligible relative to those in the direction

normal to a surface. As a result, an inviscid fluid cannot sustain shearing tractions under

any circumstances. More specifically, the stress vector t acting on any surface is always

opposite to the outward normal n to the surface, regardless of whether the fluid is stationary

or flowing, see Figure 6.2. This means that

t(n) = −pn , (6.28)

hence, in view of (4.69),

T = −pi , (6.29)

where p is the pressure. Gases, such as helium, oxygen, and nitrogen are often idealized as

inviscid fluids.

On physical grounds, one may assume that the pressure p depends on the density ρ, that

is,

T = −p(ρ)i . (6.30)
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n
t(n)

Figure 6.2. Traction acting on a surface of an inviscid fluid.

Indeed, it is reasonable to argue that the denser (respectively, heavier) the material the

larger the number of molecules (respectively, the weight of molecules) whose vibration is

generating the impacts responsible for generating the pressure p. This constitutive relation

defines a special class of inviscid fluids referred to as elastic fluids.

It is instructive here to take an alternative path for the derivation of (6.30). In particular,

suppose that one starts from the more general constitutive assumption

T = T̂(ρ) . (6.31)

Upon invoking invariance under superposed rigid-body motions, it follows that

T+ = T̂(ρ+) , (6.32)

which, with the aid of (4.199) and (4.210) leads to

QT̂(ρ)QT = T̂(ρ) , (6.33)

for all proper orthogonal Q. Furthermore, substituting −Q for Q in (6.33), it is clear

that (6.33) holds for all improper orthogonal tensors Q as well, hence it holds for all orthog-

onal tensors.

Generally, a tensor function T̂(φ) of a real variable φ is termed isotropic when

QT̂(φ)QT = T̂(φ) , (6.34)

for all orthogonal tensors Q. This condition may be interpreted as meaning that the compo-

nents of the tensor function remain unaltered when resolved on any two orthonormal bases.

Clearly, the constitutive function T̂ in (6.31) is isotropic, as mandated by (6.33).

The representation theorem for isotropic tensor functions of a real variable states that

a tensor function of a real variable is isotropic if, and only if, it is a real-valued multiple

ME185



Inviscid fluid 193

of the identity tensor. In the case of T̂ in (6.31), this theorem immediately results in the

constitutive equation (6.30).

To prove the preceding representation theorem, first note that the sufficiency argument

is trivial. The necessity argument can be made by setting

Q = Q1 = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2 , (6.35)

which, recalling the Rodrigues formula (3.129), corresponds to p = e1, q = e2, r = e3, and

θ = π/2, that is, to a rotation by π/2 with respect to the axis of e1. It is easy to verify that,

in this case, Equation (6.34) yields






T11 −T13 T12

−T31 T33 −T32

T21 −T23 T22




 =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 . (6.36)

This, in turn, implies that

T22 = T33 , T12 = T21 = T13 = T31 = 0 , T23 = −T32 . (6.37)

Next, set

Q = Q2 = e2 ⊗ e2 − e3 ⊗ e1 + e1 ⊗ e3 , (6.38)

which corresponds in (3.129) to p = e2, q = e3, r = e1, and θ = π/2. This is a rotation by

π/2 about the axis of e2. Again, upon substituting (6.38) in (6.34), it follows that






T33 T32 −T31

T23 T22 −T21

−T13 −T12 T11




 =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 , (6.39)

which leads to

T11 = T33 , T23 = T32 = T21 = T12 = 0 , T31 = −T13 . (6.40)

One may combine the results in (6.37) and (6.40) to deduce that

T = T i , (6.41)

where T = T11 = T22 = T33, which completes the proof.
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Returning to the balance laws for the elastic fluid, note that angular momentum balance

is satisfied automatically by the constitutive equation (6.29) and the non-trivial equations

that govern its motion are written in Eulerian form as

ρ̇+ ρ div v = 0 ,

− grad p(ρ) + ρb = ρv̇
(6.42)

or, upon recalling (3.20) and (4.29),

∂ρ̃

∂t
+ div (ρv) = 0 ,

− grad p(ρ) + ρb = ρ

(
∂ṽ

∂t
+

∂ṽ

∂x
v

)

.
(6.43)

Equations (6.43)2 are referred to as the compressible Euler equations. Equations (6.43)

together form a system of four coupled non-linear partial differential equations in x and t,

which, subject to the specification of suitable initial and boundary conditions and a pressure

law p = p(ρ), can be solved for ρ̃(x, t) and ṽ(x, t).

Recalling from Example 3.3.1 that div v = 0 in any isochoric motion, it follows from (6.42)1

that for such a motion the mass density is constant for each particle and equal to ρ0(X). A

material is itself incompressible if it can only sustain isochoric motions. If the inviscid fluid

is assumed incompressible, then the constitutive equation (6.30) loses its meaning, because

the function p(ρ) does not make sense as the density ρ is not a variable quantity. Instead, the

constitutive equation T = −pi holds with p being the unknown. In summary, the governing

equations for an incompressible inviscid fluid (often also referred to as an ideal fluid) are

div v = 0 ,

− grad p+ ρ0b = ρ0

(
∂ṽ

∂t
+

∂ṽ

∂x
v

)

,
(6.44)

where now the unknowns are p and v. Here, one may interpret the pressure p as the stress

term responsible for enforcing the incompressibility condition (6.44)1.

Note that if a set (p,v) satisfies equations (6.44), then so does another set of the form

(p+c,v), where c is any constant. This suggests that the pressure field in an ideal fluid is not

uniquely determined by the equations of motion. The indeterminacy is removed by specifying

the value of the pressure at some point of the domain or the boundary. This conclusion is

illustrated by considering a sphere composed of an ideal fluid, which is assumed to be in

equilibrium under uniform time-independent pressure p. The same “motion” of the ball can

be also sustained by any pressure field p+ c, where c is a constant, see Figure 6.3.
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p

Figure 6.3. A ball of ideal fluid in equilibrium under uniform pressure.

Recalling (4.130) and given (6.29), the stress power for a region P occupied by an ideal

fluid is

S(P) =

∫

P
T ·D dv =

∫

P
−pi ·D dv =

∫

P
−p div v dv . (6.45)

Equation (6.45) demonstrates that the stress power vanishes when the inviscid fluid is in-

compressible.

6.2.1 Initial/boundary-value problems of inviscid flow

6.2.1.1 Uniform inviscid flow

Consider the case of a uniform flow of an inviscid fluid, where ṽ = v0 and v0 is a constant.

Clearly, the flow is isochoric, hence (6.42)1 implies that the density remains constant at each

material particle. Also, since a = 0, it follows from (6.42)2 that

− grad p+ ρ0b = 0 .

In the absence of body force, the preceding equation implies that the pressure p(ρ) is homo-

geneous and constant throughout the flow.

6.2.1.2 Irrotational flow of an ideal fluid

Consider an ideal fluid in the absence of body forces. Assuming that the density ρ0 is

homogeneous, the linear momentum equation (6.44)2 may be written with the aid of (3.136)

as

− grad

(
p

ρ0

)

=
∂v

∂t
+ Lv . (6.46)
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However, it is easy to show that

Lv = grad

(
1

2
v · v

)

+ 2Wv

= grad

(
1

2
v · v

)

− 2v ×w

= grad

(
1

2
v · v

)

− v × curlv , (6.47)

where use is made of (3.146), (2.36) and (3.161). In view of the preceding equation, the

linear momentum equation (6.46) may be also expressed as

∂v

∂t
= − grad

(
p

ρ0
+

1

2
v · v

)

+ v × curlv . (6.48)

Taking the curl of both sides of (6.48), invoking incompressibility in the form of (6.44)1, and

recalling the identities (d)-(f) in Exercise 2-23, it follows that

curl
∂v

∂t
=

∂

∂t
(curlv) = − curl grad

(
p

ρ0
+

1

2
v · v

)

+ curl (v × curlv)

= curl (v × curlv)

= div (v ⊗ curlv − curlv ⊗ v)

= gradv curlv + div(curlv)v − grad(curlv)v − div v curlv

= gradv curlv − grad(curlv)v . (6.49)

The latter readily implies that the material time derivative of curlv is expressed as

d(curlv)

dt
=

∂(curlv)

∂t
+ grad(curlv)v = gradv curlv . (6.50)

Therefore, if the flow of an ideal fluid becomes irrotational at any given time, then (6.50)

implies that
d(curlv)

dt
= 0 at that time, which proves that the flow remains irrotational for

all subsequent times.

6.3 Viscous fluid

All actual fluids exhibit some viscosity, that is, some capacity to resist shearing. It is easy to

conclude on physical grounds that the resistance to shearing must be related to the spatial

change in the velocity, as seen in Figure 6.4. Here, the horizontal component of the velocity

ME185



Viscous fluid 197

���������������
���������������
���������������
���������������

Figure 6.4. Shearing of a viscous fluid

vanishes at the solid-fluid interface, corresponding to the no-slip condition, while the same

velocity attains increasing values as one moves further away from the interface. Therefore,

it is sensible to postulate a general constitute law for viscous (or viscid) fluids in the form

T = T̂(ρ,L) (6.51)

or, recalling the unique additive decomposition of L in (3.144), more generally as

T = T̂(ρ,D,W) . (6.52)

It turns out that the explicit dependence of the Cauchy stress on W can be suppressed

by invoking invariance under superposed rigid-body motions. Indeed, this requirement leads

to the condition

T+ = T̂(ρ+,D+,W+) . (6.53)

Recalling (3.207), (3.208) and (4.210), equation (6.53) takes the form

QT̂(ρ,D,W)QT = T̂(ρ,QDQT ,QWQT +Ω) , (6.54)

for all proper orthogonal tensors Q. Now, consider a special superposed rigid-body motion

for which Q(t) = i, Q̇(t) = Ω0, c(t) = 0, and ċ(t) = 0. This is a superposed rigid-body

rotation on the original current configuration with constant angular velocity defined by the

skew-symmetric tensor Ω0. Given the special form of this superposed rigid-body motion,

Equation (6.54) implies that

T̂(ρ,D,W) = T̂(ρ,D,W +Ω0) , (6.55)

which must hold for any constant skew-symmetric tensor Ω0. This means that the constitu-

tive function T̂ cannot depend on W, thus it reduces to

T = T̂(ρ,D) . (6.56)
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Invariance under superposed rigid-body motions for the reduced constitutive function

in (6.56) gives rise to the condition

T+ = T̂(ρ+,D+) , (6.57)

which, upon appealing to (3.207) and (4.210), necessitates that

QT̂(ρ,D)QT = T̂(ρ,QDQT ) , (6.58)

for all proper orthogonal tensors Q. In fact, since both sides of (6.58) are even functions

of Q, it is clear that (6.58) must hold for all orthogonal tensors Q.

Suppressing, for a moment, the dependence of T̂ on ρ in Equation (6.58), note that a

tensor function T̂ of a tensor variable S is called isotropic if

QT̂(S)QT = T̂(QSQT ) , (6.59)

for all orthogonal tensors Q. In this context, isotropy of T̂ i implies that an orthogonal

transformation of its argument leads to a likewise orthogonal transformation of its value.

It can be proved following the process used earlier for isotropic tensor functions of a real

variable that a tensor function T̂ of a tensor variable S is isotropic in the sense of (6.59) if,

and only if, it can be written in the form

T̂(S) = a0i+ a1S+ a2S
2 , (6.60)

where a0, a1, and a2 are real-valued functions of the three principal invariants IS, IIS and

IIIS of the tensor S, that is,

a0 = â0(IS, IIS, IIIS) , a1 = â1(IS, IIS, IIIS) , a2 = â2(IS, IIS, IIIS) . (6.61)

The above result is known as the representation theorem for isotropic tensor-valued functions

of a tensor variable. Using this theorem, it is readily concluded that the Cauchy stress for

a viscous fluid that obeys the constitutive law (6.56) is of the form

T̂(ρ,D) = a0i+ a1D+ a2D
2 , (6.62)

where a0, a1 and a2 are functions of ID, IID, IIID and ρ. The preceding equation characterizes

what is known as the Reiner2-Rivlin fluid. Materials that obey (6.62) are also generally

referred to as non-Newtonian fluids.

2Markus Reiner (1886–1976) was an Austrian-born Israeli engineer.

ME185



Viscous fluid 199

At this stage, introduce a physically plausible assumption by way of which the Cauchy

stress T reduces to mere hydrostatic pressure −p(ρ)i when D = 0. Then, one may slightly

rewrite the constitutive function (6.62) as

T̂(ρ,D) =
(
−p(ρ) + a∗0

)
i+ a1D+ a2D

2 , (6.63)

where, in general, a∗0 = â∗0(ρ, ID, IID, IIID). Clearly, when a∗0 = a1 = a2 = 0, the viscous fluid

degenerates to an inviscid one, as seen from (6.30).

From the above general class of viscous fluids, consider the sub-class of those for which

the Cauchy stress is linear in D. To ensure linearity in D, the constitutive function in (6.63)

is reduced to

T̂(ρ,D) =
(
−p(ρ) + a∗0

)
i+ a1D . (6.64)

where a∗0 = λID, a1 = 2µ, and λ, µ are material parameters that depend, in general, only

on ρ. This means that the Cauchy stress tensor now takes the simplified form

T̂(ρ,D) = −p(ρ)i+ λ(ρ)(trD)i+ 2µ(ρ)D . (6.65)

Viscous fluids which obey (6.65) are referred to as Newtonian viscous fluids or linear viscous

fluids. The functions λ and µ are called the viscosity coefficients and have dimension of

stress times time (or [ML−1
T
−1]).

With the constitutive equation (6.65) in place, consider the balance laws for the New-

tonian viscous fluid. Clearly, angular momentum balance is satisfied at the outset, since T

in (6.65) is already symmetric. Recalling (4.28) and (4.75), the balances of mass and linear

momentum can be expressed as

ρ̇+ ρ div v = 0

div
[
−p(ρ)i+ λ(ρ)(trD)i+ 2µ(ρ)D

]
+ ρb = ρa .

(6.66)

Assuming further that λ and µ are independent of ρ (which is common), the left-hand side

of (6.66)2 takes the form

div
[
−p(ρ)i+ λ(trD)i+ 2µD

]
= − grad p(ρ) + λ grad div v + µ(div gradv + grad div v)

= − grad p(ρ) + (λ+ µ) grad div v + µ div gradv . (6.67)

Therefore, for this special case, Equations (6.66) may be expressed as

ρ̇+ ρ div v = 0

− grad p(ρ) + (λ+ µ) grad div v + µ div gradv + ρb = ρa .
(6.68)

Equations (6.68)2 are known as the Navier3-Stokes equations for the compressible Newtonian

3Claude-Louis Navier (1785–1836) was a French engineer.
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viscous fluid. As in the case of the compressible inviscid fluid, there are four coupled non-

linear partial differential equations in (6.68) and four unknowns, that is, the mass density ρ

and the velocity v.

If the Newtonian viscous fluid is assumed incompressible (which implies that trD =

div v = 0), the Cauchy stress is given by

T̂(p,D) = −pi+ 2µD , (6.69)

where the pressure p enforces the incompressibility constraint, in complete analogy to the

inviscid case. Hence, the governing equations (6.68) take the form

div v = 0

− grad p+ µ div gradv + ρb = ρa .
(6.70)

The first equation in (6.70) is a local statement of the constraint of incompressibility, while

the second is the reduced statement of linear momentum balance that reflects incompress-

ibility. Also, upon recalling the mass balance equation (4.28), incompressibility implies that

the material time derivative of the density ρ vanishes identically, that is the density remains

constant for any given particle. As in the inviscid case, the four unknowns now are the

pressure p and the velocity v.

As with the Euler equations, the Navier-Stokes equations are non-linear in v due to

the acceleration term a =
∂ṽ

∂t
+

∂ṽ

∂x
v. In the special case of very slow and nearly steady

flow, referred to as creeping flow or Stokes flow, the acceleration term may be altogether

ignored in (6.66)2, giving rise to a system of four time-independent linear partial differential

equations. For flows in which the convective acceleration
∂ṽ

∂x
v is much smaller in magnitude

than the partial time derivative
∂ṽ

∂t
of the velocity, one may reasonably choose to neglect

the former while retaining the latter, leading to the unsteady Stokes flow approximation of

the incompressible Navier-Stokes equations.

6.3.1 The Helmholtz-Hodge decomposition and projection meth-

ods in computational fluid mechanics

Any twice continuously differentiable in x vector field ṽ(x, t) defined at any time t in a

domain R with sufficiently smooth boundary ∂R can be uniquely decomposed as

ṽ = vso + vir , (6.71)
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where

div vso = 0 in R (6.72)

and

vso · n = 0 on ∂R , (6.73)

while

curlvir = 0 . (6.74)

Equation (6.71) describes a useful form of the Helmholtz4-Hodge5 decomposition of a vector

field ṽ into a solenoidal (that is, divergence-free) part vso and an irrotational part vir.

As (6.72) and (6.73) suggest, the former is specifically defined as a divergence-free vector

field whose normal component vanishes along the boundary ∂R of the domain. In addition,

it can be shown that, given any irrotational vector field vir in a simply connected6 region R,

there exists a real-valued function φ(x, t) in the same domain, such that

vir = gradφ . (6.75)

To argue the uniqueness of this decomposition, first note that
∫

R
vso · vir dv =

∫

R
vso · gradφ dv

=

∫

R
div(φvso) dv −

∫

R
φ div vso dv

=

∫

∂R
φvso · n da = 0 , (6.76)

where use is made of the product rule, the divergence theorem (2.99) and the properties (6.72)

and (6.73) of vso. Therefore, the vector fields vso and vir are mutually orthogonal in the

sense of (6.76). Subsequently, suppose, by contradiction, that there exist distinct solenoidal

vector fields v
(1)
so , v

(2)
so and irrotational vector fields v

(1)
ir , v

(2)
ir , such that

v = v(1)
so + v

(1)
ir = v(2)

so + v
(2)
ir . (6.77)

Next, write the difference between the two decompositions as

(
v(1)
so − v(2)

so

)
+
(
v
(1)
ir − v

(2)
ir

)
= 0 , (6.78)

4Herman von Helmholtz (1821–1894) was a German physicist and physician.
5William V.D. Hodge (1903–1975) was a Scottish mathematician.
6A region R in E3 is simply connected if any closed curve in R may be continuously shrunk to a point

without ever exiting R.
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and consider the product

∫

R

(
v(1)
so − v(2)

so

)
·
[(
v(1)
so − v(2)

so

)
+
(
v
(1)
ir − v

(2)
ir

)]

dv

=

∫

R

(
v(1)
so − v(2)

so

)
·
(
v(1)
so − v(2)

so

)
dv +

∫

R

(
v(1)
so − v(2)

so

)
·
(
v
(1)
ir − v

(2)
ir

)
dv = 0 . (6.79)

Exploiting the orthogonality condition (6.76), the preceding equation reduces to

∫

R

(
v(1)
so − v(2)

so

)
·
(
v(1)
so − v(2)

so

)
dv =

∫

R

∣
∣v(1)

so − v(2)
so

∣
∣
2
dv = 0 , (6.80)

which implies that v
(1)
so = v

(2)
so , hence also v

(1)
ir = v

(2)
ir , therefore the decomposition (6.71) is

unique.

To argue the existence of the decomposition, note that, given any vector field ṽ in the

domain R at time t, which satisfies (6.71), one may write

div ṽ = div vso + div gradφ = div gradφ (6.81)

subject to

ṽ · n = (vso + vir) · n = vir · n = gradφ · n (6.82)

on the boundary ∂R, where the defining properties (6.72), (6.73), and (6.75) of vso and vir

are invoked. Equations (6.81) and (6.82) imply that, given ṽ, determining the real-valued

function φ is tantamount to solving the boundary-value problem

div gradφ = div ṽ in R ,

gradφ · n = ṽ · n on ∂R .
(6.83)

This is the classical Laplacian with prescribed flux boundary conditions, which can be readily

shown to possess a solution φ which is unique to within an additive constant. This non-

uniqueness is of no consequence to the Helmholtz-Hodge decomposition, since φ enters the

definition of vir only through its gradient. Once vir is shown to exist, a solenoidal vector

field vso is defined as vso = ṽ − gradφ.

The Helmholtz-Hodge decomposition plays a pivotal role in a powerful class of numerical

methods used to solve the incompressible Navier-Stokes equations. To illustrate the use of

these so-called projection methods in the simplest possible setting, suppose that a solution

to the incompressible Navier-Stokes equations (6.70) is sought in a domain R subject to the
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boundary condition v · n = 0 on ∂R. Projection methods first establish a prediction v∗ to

the velocity field, such that

µ div gradv∗ + ρ0b = ρ0a
∗ (6.84)

in R and v∗ · n = 0 on ∂R. Also, let the density be spatially homogeneous and equal to ρ0.

Clearly, v∗ does not involve the pressure field p appearing in (6.70)2 nor does it satisfy,

in general, the incompressibility condition of (6.70)1. For this reason, a correction to the

velocity is subsequently introduced, such that

− grad p = ρ0(a− a∗) . (6.85)

Ignoring the effect of the correction on the first term on the viscous force term in (6.70)2,

the preceding equation may be rewritten as

a∗ = a+ grad
p

ρ0
. (6.86)

Integrating (6.86) in time over a small increment ∆t and assuming here, for simplicity, zero

initial velocity, one may write, to within a small error,

v∗ = v + grad
p∆t

ρ0
. (6.87)

Equation (6.87) represents the Helmholtz-Hodge decomposition of the field v∗ into the actual

velocity field v (which is solenoidal) and the pressure gradient grad p (weighted by
∆t

ρ0
).

Therefore, the exact velocity v (to within numerical error) is obtained by projecting v∗

to its solenoidal part, which justifies the name of the method. The pressure p may be

subsequently determined by solving the Laplacian resulting from the divergence of both

sides of Equation (6.87).

6.3.2 Initial/boundary-value problems of viscous flow

6.3.2.1 Gravity-driven flow down an inclined plane

Consider an incompressible Newtonian viscous fluid in steady flow down an inclined plane

due to the influence of gravity, see Figure 6.5. Let the pressure of the free surface be constant

and equal to p0 and assume that the fluid region has constant depth h.

Assume at the outset that the velocity and pressure fields are of the form

v = ṽ(x2, x3)e2 (6.88)
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Figure 6.5. Flow down an inclined plane

and

p = p̃(x1, x2, x3) , (6.89)

respectively. Incompressibility implies that

div v =
∂ṽ

∂x2

= 0 , (6.90)

which means that the velocity field is independent of x2, namely that

v = v̄(x3)e2 . (6.91)

This, in turn, implies that the acceleration vanishes identically.

Given the reduced form of the velocity field in (6.91), the velocity gradient tensor is

written in component form as

[Lij ] =






0 0 0

0 0 dv̄
dx3

0 0 0




 , (6.92)

which implies that the rate-of-deformation tensor has components

[Dij] =






0 0 0

0 0 1
2

dv̄
dx3

0 1
2

dv̄
dx3

0




 . (6.93)

Recalling the constitutive equation (6.69), it follows from (6.93) that the Cauchy stress is

given by

[Tij ] =






−p 0 0

0 −p µ dv̄
dx3

0 µ dv̄
dx3

−p




 . (6.94)
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Note that gravity induces body force per unit mass equal to

b = g(sin θe2 − cos θe3) , (6.95)

where g is the gravitational constant. Given (6.89), (6.91), (6.94) and (6.95), the equations

of linear momentum balance assume the form

− ∂p̃

∂x1

= 0 ,

− ∂p̃

∂x2

+ µ
d2v̄

dx2
3

+ ρg sin θ = 0 , (6.96)

− ∂p̃

∂x3

− ρg cos θ = 0 .

It follows from (6.96)1,3 that

p = p̄(x2, x3) = −ρgx3 cos θ + f(x2) , (6.97)

where f(x2) is a function to be determined.

Next, taking advantage of (6.97) to impose the pressure boundary condition on the free

surface, one finds that

p̄(x2, h) = −ρgh cos θ + f(x2) = p0 , (6.98)

where p0 is the ambient (say, atmospheric) pressure. This, in turn, implies that the func-

tion f(x2) is constant and equal to

f(x2) = p0 + ρgh cos θ . (6.99)

Substituting this equation to (6.97) results in an expression for the pressure as

p = p0 + ρg(h− x3) cos θ . (6.100)

Using the pressure from (6.100) in the remaining momentum balance equation (6.96)2 and

recalling (6.91) leads to

µ
d2v̄

dx2
3

+ ρg sin θ = 0 , (6.101)

which may be integrated twice to

v̄(x3) =
−ρg sin θ

2µ
x2
3 + c1x3 + c2 . (6.102)
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Enforcing the no-slip boundary conditions v̄(0) = 0 on the solid-fluid interface and the no-

shearing traction condition T23(h) = 0 on the free surface gives c2 = 0 and c1 =
ρgh sin θ

µ
,

which, when substituted into (6.102) yield

v̄(x3) =
ρg sin θ

µ
x3

(

h− x3

2

)

. (6.103)

It is seen from (6.103) that the velocity distribution is parabolic along the x3-axis and

attains maximum value vmax =
ρg sin θ

2µ
h2 on the free surface. As expected on physical

grounds, the velocity is proportional to the gravity force, the density of the fluid, and the

slope of the inclined plane, as well as inversely proportional to the viscosity.

6.3.2.2 Couette flow between concentric cylinders

The steady viscous flow developed between two rigid surfaces that move tangentially to

each other is referred to as Couette7 flow. By way of example, consider the flow between

two concentric and infinitely long rigid cylinders of radii Ro (outer cylinder) and Ri (inner

cylinder) rotating with constant angular velocities ωo (outer cylinder) and ωi (inner cylinder),

see Figure 6.6. The fluid is assumed Newtonian and incompressible. Also, the effect of body

force is neglected.

r

Ro

Ri

ωoωi

er

eθ

Figure 6.6. Couette flow between concentric cylinders

The problem lends itself naturally to analysis using cylindrical polar coordinates with

right-hand orthonormal basis vectors {er, eθ, ez}. The velocity and pressure fields are as-

sumed axisymmetric and, using the cylindrical polar coordinate representation, can be ex-

pressed as

v = v̄(r)eθ (6.104)

7Maurice Marie Alfred Couette (1858–1943) was a French physicist.
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and

p = p̄(r) . (6.105)

Taking into account (A.17), the spatial velocity gradient can be written as

L =
dv̄

dr
eθ ⊗ er −

v̄

r
er ⊗ eθ , (6.106)

so that

D =
1

2

(
dv̄

dr
− v̄

r

)

(er ⊗ eθ + eθ ⊗ er) =
r

2

d

dr

( v̄

r

)

(er ⊗ eθ + eθ ⊗ er) . (6.107)

It is clear from (6.107) that div v = 0, hence the incompressibility condition is satisfied from

the outset by the velocity field in (6.104). Also, in light of (3.20) the acceleration of the fluid

is expressed as

a =

(
dv̄

dr
eθ ⊗ er − v̄

1

r
er ⊗ eθ

)

v̄eθ = − v̄2

r
er , (6.108)

where use is made of (6.104) and (6.106).

The stress may be computed from (6.69) with the aid of (6.107) and equals

T = −pi+ µr
d

dr

( v̄

r

)

(er ⊗ eθ + eθ ⊗ er) . (6.109)

Taking into account (6.109), (6.108), and (A.20), the linear momentum balance equations in

the r- and θ-directions become

−dp

dr
= − ρ

v̄2

r
,

d

dr

[

r
d

dr

( v̄

r

)]

+ 2
d

dr

( v̄

r

)

= 0 ,
(6.110)

respectively.

The second of the above equations may be integrated twice to give

v̄(r) = c1r +
c2
r

. (6.111)

The integration constants c1 and c2 can be determined by imposing the no-slip boundary

conditions v̄(Ri) = ωiRi and v̄(Ro) = ωoRo. Upon determining these constants, the velocity

of the flow takes the form

v̄(r) = ωoRo

Ro

Ri

(
r

Ri

− Ri

r

)

+
ωi

ωo

(
Ro

r
− r

Ro

)

(
Ro

Ri

)2

− 1

. (6.112)
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Finally, integrating equation (6.110)1 and using a pressure boundary condition such as, e.g.,

p̄(R0) = p0, leads to an expression for the pressure p̄(r).

It is clear from (6.112) that in the special case of two cylinders spinning with the same

angular velocity ωi = ωo = ω, the circumferential velocity of the fluid reduces to v̄(r) = ωr.

Alternatively, when the inner cylinder collapses to a point (that is, where Ri 7→ 0), the

velocity becomes simply v̄(r) = ω0r.

6.3.2.3 Poiseuille flow

Poiseuille8 flow is the steady flow of an incompressible Newtonian viscous fluid through a

straight cylindrical pipe of constant radius R in the absence of gravity, see Figure 6.7. Adopt-

ing, again, a cylindrical polar coordinate system, and aligning the ez-axis to the centerline

R

ez

Figure 6.7. Poiseuille flow

of the pipe, assume that the velocity of the fluid is of the general form

v = v̄(r)ez , (6.113)

while the pressure is

p = p̄(r, z) . (6.114)

Taking again into account (A.17), the velocity gradient for this flow is given by

L =
dv̄

dr
ez ⊗ er , (6.115)

hence the rate-of-deformation tensor is expressed as

D =
1

2

dv̄

dr
(er ⊗ ez + ez ⊗ er) . (6.116)

Equation (6.116) shows that the assumed velocity field satisfies the incompressibility condi-

tion at the outset, while (6.113) and (6.115) imply that the acceleration vanishes identically.

8Jean Louis Marie Poiseuille (1797–1869) was a French physicist.
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Given (6.116), the Cauchy stress of the incompressible fluid is of the form

T = −pi+ µ
dv̄

dr
(er ⊗ ez + ez ⊗ er) . (6.117)

Then, the equations of linear momentum balance take the form

−∂p̄

∂r
= 0 ,

−1

r

∂p̄

∂θ
= 0 , (6.118)

−∂p̄

∂z
+ µ

d2v̄

dr2
+

µ

r

dv̄

dr
= 0 ,

where (A.20) is employed. Equation (6.118)2 is satisfied identically due to assumption (6.114),

while (6.118)1 implies that p = p̂(z). However, given that v̄ depends only on r, Equation

(6.118)3 requires that
dp̂

dz
= c , (6.119)

where c is a constant. Upon integrating (6.118)3 in r, one finds that

v̄(r) =
cr2

4µ
+ c1 ln r + c2 , (6.120)

where c1 and c2 are also constants. Admitting that the solution should remain finite at r = 0

and imposing the no-slip condition v̄(R) = 0, it follows that

v̄(r) =
c

4µ
(r2 −R2) , (6.121)

which establishes a quadratic profile for the velocity along the radius of the pipe.

Two additional boundary conditions are necessary (either a velocity boundary condition

on one end and a pressure boundary condition on the other or pressure boundary condi-

tions on both ends of the pipe) in order to fully determine the velocity and pressure fields.

If, in particular, it is assumed that v̄(0) = v0 at some cross-section, then it is concluded

from (6.121) that c = −4µv0
R2 , hence the velocity becomes

v̄(r) =

[

1−
( r

R

)2
]

v0 . (6.122)

Given the expression for c, one may establish, with the aid of (6.119), a relation between the

viscosity µ and the pressure change (drop) ∆p along a region of the pipe with length ∆L

according to

∆p = −4µv0
R2

∆L . (6.123)
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This relation may be employed to estimate experimentally the viscosity coefficient µ. As is

physically plausible, it establishes that the pressure change is proportional to the viscocity

coefficient and the total length of the pipe segment, while also inversely propoprional to its

cross-sectional area.

6.3.2.4 Stokes’ second problem

Consider the semi-infinite domain R = {(x1, x2, x3) | x3 > 0}, which contains a compressible

Newtonian viscous fluid, see Figure 6.8. The fluid is subjected to a periodic motion of its

boundary x3 = 0 in the form

vp(t) = U cos (ωt)e1 , (6.124)

where U > 0 is the magnitude and ω > 0 the frequency. In addition, the body force is

neglected and the initial mass density is assumed homogeneous.

vp

e1
e2e3

Figure 6.8. Semi-infinite domain for Stokes’ second problem

Adopting a semi-inverse approach, assume a general form of the solution as

v = ṽ(x3, t) = f(x3) cos (ωt− αx3)e1 , (6.125)

where the function f and the constant α are to be determined. The solution (6.125) assumes

that the magnitude of the velocity field attenuates in the x3-direction, as prescribed by f(x3),

and remains periodic, albeit with a phase-shift of αx3 relative to the prescribed boundary

velocity. Further, note that the assumed motion is isochoric, hence, owing to conservation

of mass, the initially homogeneous mass density remains homogeneous throught the motion.

In view of (3.20) and (6.125), the acceleration field is given by

a = ã(x3, t) = −ωf(x3) sin (ωt− αx3)e1 , (6.126)

where the convective part is identically zero.
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The only non-vanishing components of the rate-of-deformation tensor are

D13 = D31 =
1

2

[
df

dx3

cos (ωt− αx3) + αf sin (ωt− αx3)

]

. (6.127)

Taking into account (6.65) and recalling that the motion is isochoric (hence, µ and p are

necessarity homogeneous due to the homogeneity of ρ), it follows that

[Tij ] =






−p 0 T13

0 −p 0

T31 0 −p




 , (6.128)

where

T13 = T31 = µ

[
df

dx3

cos (ωt− αx3) + αf sin (ωt− αx3)

]

. (6.129)

Taking into account (6.126) and (6.128) it is easy to see that the linear momentum

balance equations in the e2- and e3-directions hold identically. In the e1-direction, the linear

momentum balance equation takes the form

µ

[
d2f

dx2
3

cos (ωt− αx3) + 2α
df

dx3

sin (ωt− αx3)− α2f cos (ωt− αx3)

]

= −ρωf sin (ωt− αx3) . (6.130)

The preceding equation can be also written as

µ

(
d2f

dx2
3

− α2f

)

cos (ωt− αx3) +

(

2µα
df

dx3

+ ρωf

)

sin (ωt− αx3) = 0 . (6.131)

Clearly, for this equation to be satisfied identically for all x3 and t, it is necessary and

sufficient that
d2f

dx2
3

− α2f = 0 , 2µα
df

dx3

+ ρωf = 0 . (6.132)

These two equations can be directly integrated to give

f(x3) = c1e
αx3 + c2e

−αx3 , f(x3) = c3e
− ρω

2µα
x3 , (6.133)

respectively. To reconcile the two solutions, one needs to let c1 = 0 and c2 = c3 = c, therefore

f(x3) = ce−
ρω
2µα

x3 , (6.134)

where α =

√
ρω

2µ
and, as expected from (6.125), has units of [L−1]. With this expression in

place, the velocity field in (6.125) takes the form

ṽ(x3, t) = ce−
√

ρω
2µ

x3 cos (ωt− αx3)e1 . (6.135)
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Applying the boundary condition ṽ(0, t) = vp(t), which, in light of (6.124) yields c = U , it

is finally concluded that

ṽ3(x3, t) = Ue−
√

ρω
2µ

x3 cos

(

ωt−
√

ρω

2µ
x3

)

e1 . (6.136)

It is clear from (6.136) that the boundary velocity decays exponentially along x3 with

rate of decay that is inversely proportional to the square-root of the viscosity of the fluid and

phase shift that is likewise inversely proportional to the square-root of the viscosity. Also note

that the pressure p is constitutively specified, yet is constant throughout the semi-infinite

domain owing to the homogeneity of the mass density. It is also instructive to consider the

limiting cases µ → 0 and µ → ∞, which demonstrate that it is viscosity itself that enables

the fluid motion.

6.4 Non-linearly elastic solid

Recalling the definition of stress power in the mechanical energy balance theorem of Equa-

tion (4.129), define a non-linearly elastic solid by admitting the existence of a strain energy

function Ψ = Ψ̂(F) per unit mass, such that

T ·D = ρΨ̇ . (6.137)

Note that, since Ψ depends on the deformation gradient F, the strain energy is measured

relative to a given reference configuration. It follows, with the aid of (4.28) and the Reynolds

transport theorem, that the stress power in the region P is written as

∫

P
T ·D dv =

∫

P
ρΨ̇ dv =

d

dt

∫

P
ρΨ dv =

d

dt
W (P) , (6.138)

where W (P) =

∫

P
ρΨ dv is the total strain energy of the material occupying the region P .

As a result, the mechanical energy balance theorem (4.131) for this class of materials takes

the form
d

dt
[K(P) +W (P)] = Rb(P) +Rc(P) = R(P) . (6.139)

In words, Equation (6.139) states that the rate of change of the kinetic and strain energy

(which together comprise the total internal energy of the non-linearly elastic material) equals

the rate of work done by the external forces. Non-linearly elastic materials for which there
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exists such a strain energy function Ψ̂ are referred to as Green-elastic or hyperelastic mate-

rials.

Since the strain energy function depends exclusively on the deformation gradient, one

may use the chain rule to conclude that

Ψ̇ =
∂Ψ̂

∂F
· Ḟ , (6.140)

so that, upon recalling (3.135) and (6.137),

T ·D = T · L

= ρΨ̇ = ρ
∂Ψ̂

∂F
· (LF) = ρ

∂Ψ̂

∂F
FT · L ,

(6.141)

where the symmetry of the Cauchy stress has been exploited. The preceding equation implies

that

(T− ρ
∂Ψ̂

∂F
FT ) · L = 0 . (6.142)

Observing that L may vary independently of F, it follows immediately that

T = ρ
∂Ψ̂

∂F
FT . (6.143)

Upon enforcing the symmetry of the Cauchy stress, Equation (6.143) leads to

∂Ψ̂

∂F
FT = F

(

∂Ψ̂

∂F

)T

. (6.144)

This places a restriction on the form of the strain energy function Ψ̂. Instead of explicitly

enforcing this restriction, one may simply write the Cauchy stress as

T =
1

2
ρ




∂Ψ̂

∂F
FT + F

(

∂Ψ̂

∂F

)T


 . (6.145)

In addition, upon recalling (4.33) and (4.110), it is readily seen from (6.143) that the stress

response of a Green-elastic material may be equivalently expressed in terms of the first

Piola-Kirchhoff stress tensor as

P = ρ0
∂Ψ̂

∂F
. (6.146)

Alternative expressions for the strain energy of the non-linearly elastic solid may be ob-

tained by invoking invariance under superposed rigid-body motions. Specifically, objectivity
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of Ψ, which is well-justified on physical grounds, and invariance of the constitutive function Ψ̂

under superposed rigid-body motions imply that

Ψ+ = Ψ̂(F+) = Ψ̂(QF)

= Ψ = Ψ̂(F) ,
(6.147)

for all proper orthogonal tensors Q. Selecting Q = RT , where R is the rotation stemming

from the polar decomposition of F9 of (3.86)1, it follows from (6.147) that

Ψ̂(F) = Ψ̂(QF) = Ψ̂(RTRU) = Ψ̂(U) . (6.148)

Therefore, one may write

Ψ = Ψ̂(F) = Ψ̂(U) = Ψ̄(C) = Ψ̌(E) , (6.149)

by merely exploiting the one-to-one relations (3.69)1 and (3.90) between tensorsU, C, and E.

Then, the material time derivative of Ψ can be expressed as

Ψ̇ =
∂Ψ̄

∂C
· Ċ =

∂Ψ̄

∂C
· (2FTDF) = 2F

∂Ψ̄

∂C
FT ·D , (6.150)

where (3.147) is invoked. It follows from (6.137) that

T ·D = 2ρF
∂Ψ̄

∂C
FT ·D , (6.151)

or, equivalently,
(

T− 2ρF
∂Ψ̄

∂C
FT

)

·D = 0 . (6.152)

Given the arbitrariness of D for any given deformation gradient F, it follows that

T = 2ρF
∂Ψ̄

∂C
FT . (6.153)

Using an analogous procedure, one may also derive a constitutive equation for the Cauchy

stress in terms of the strain energy function Ψ̌ as

T = ρF
∂Ψ̌

∂E
FT . (6.154)

9Since, by its definition, R ∈ L(TxR, TXR0) is a two-point tensor while Q ∈ L(TxR, TxR) is a spatial ten-

sor, it should be understood here thatQ is equal toRT to within the two-point shifter tensor ı = δiAei ⊗EA,

that is, Q = ıRT , although ı ∈ L(TxR, TXR0) does not appear explicitly in the derivation.

ME185



Non-linearly elastic solid 215

It follows from (6.153) and (6.154), with the aid of (4.33) and (4.116), that the stress

response of the Green-elastic solid may be expressed in terms of the second Piola-Kirchhoff

stress tensor as

S = 2ρ0
∂Ψ̄

∂C
= ρ0

∂Ψ̌

∂E
. (6.155)

Next, consider a body made of Green-elastic material that undergoes a smooth motion χ,

for which there exist times t1 and t2(> t1), such that

x = χ(X, t1) = χ(X, t2) (6.156)

and, also,

F =
∂χ(X, t1)

∂X
=

∂χ(X, t2)

∂X
, v = χ̇(X, t1) = χ̇(X, t2) , (6.157)

for all X. This motion is referred to as a smooth closed cycle in [t1, t2], as every material

particle P in the body starts and ends in the same position with the same deformation

and velocity, see Figure 6.9. In addition, recall the theorem of mechanical energy balance

vP

P(t1),P(t2) P(t)

Figure 6.9. Closed cycle for a part P of a body containing particle P .

in (6.139) and integrate this equation in time between t1 and t2 to find that

[K(P) +W (P)]t2t1 =

∫ t2

t1

[Rb(P) +Rc(P)] dt . (6.158)

However, since the motion is a closed cycle, it is immediately concluded from (6.157) that

[K(P) +W (P)]t2t1 =

[∫

P

1

2
ρv · v dv +

∫

P
ρΨ̂(F) dv

]t2

t1

= 0 , (6.159)

thus, also, in view of (4.119), (4.120), and (6.158), that

∫ t2

t1

[Rb(P) +Rc(P)] dt =

∫ t2

t1

(∫

P
ρb · v dv +

∫

∂P
t · v da

)

dt = 0 . (6.160)
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This proves that the total work done on a non-linearly elastic solid by the external forces

during a closed cycle is equal to zero.

Equation (6.139) further implies that

∫ t

t1

(∫

P
ρb · v dv +

∫

∂P
t · v da

)

dt =

[∫

P

1

2
ρv · v dv +

∫

P
ρΨ̂(F) dv

]t

t1

. (6.161)

This means that the total work done by the external forces taking the body from its con-

figuration at time t1 to a configuration at time t(> t1) depends only on the end states at t

and t1 and not on the path connecting these two states, see Figure 6.9. This is the sense in

which the Green-elastic materials are characterized as path-independent.

A more general class of non-linearly elastic materials is defined by the constitutive relation

T = T̂(F) . (6.162)

Such materials are called Cauchy-elastic and, in general, do not satisfy the condition of

worklessness in a closed cycle. Recalling the constitutive equation (6.145), it is clear that

any Green-elastic material is also Cauchy-elastic. Upon reflecting on the constitutive equa-

tion (6.162), one may conclude that in a Cauchy-elastic material the stress at a given time is

fully determined by the deformation at that time relative to a given reference configuration.

The concept of material symmetry is now introduced for the class of Cauchy-elastic ma-

terials. To this end, let P be a material particle that occupies the point X in the reference

configuration. Also, take an infinitesimal volume element P0 which contains X in the ref-

erence configuration. Now, consider another reference configuration locally related to the

original one by a transformation characterized by the invertible tensor F′, see Figure 6.10.

This defines the geometric relation between the regions P0 and P ′
0. Note, however, that the

stress at point P and time t is agnostic to (therefore, independent of) the specific choice of

reference configuration. Hence, when expressed in terms of the deformation relative to the

transformed reference configuration, the Cauchy stress at point P is, in general, given by

T = T̂′(FF′−1) , (6.163)

where the function T̂′ must be different from T̂. The preceding analysis demonstrates that

the constitutive law (6.162) itself depends, in general, on the choice of reference configuration.

For this reason, one may choose, at the expense of added notational burden, to formally

write (6.162) and (6.163) as

T = T̂P0
(F) (6.164)
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and

T = T̂P ′

0
(FF′−1) , (6.165)

respectively, thereby stating explicitly the reference configuration relative to which the stress

function is defined.

P

P
P

P0P ′
0

P

F′

F′−1

F

Figure 6.10. Deformation relative to two reference configurations P0 and P ′
0.

By way of background, recall here that a group G is a set together with an operation ∗,
such that the following properties hold for any three elements a, b, c of the set:

(i) a ∗ b belongs to the set (closure),

(ii) (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity),

(iii) There exists an element i, such that i ∗ a = a ∗ i = a (existence of identity),

(iv) For every a, there exists an element a−1, such that a ∗ a−1 = a−1 ∗ a = i (existence of

inverse).

It is easy to confirm that the set of all orthogonal transformations Q ∈ L(TXR0, TXR0)

of the original reference configuration forms a group under the usual tensor multiplication,

called the orthogonal group or O(3). In this group, the identity element is the referential

identity tensor I and the inverse element is the inverse Q−1 (or transpose QT ) of any given

element Q. The subgroup10 GP0
⊆ O(3) is called a symmetry group for the Cauchy-elastic

material with respect to the reference configuration P0 if

T̂P0
(F) = T̂P0

(FQ) , (6.166)

for all Q ∈ GP0
. Physically, Equation (6.166) identifies orthogonal transformations Q which

produce the same stress at P under two different loading cases. The first one subjects

10A subset of the group set together with the group operation is called a subgroup if it satisfies the closure

property within the subset.
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the reference configuration to any deformation gradient F. The second one subjects the

reference configuration to an orthogonal transformation Q and then to the same deformation

gradient F as the first one, see Figure 6.11. If the stress in both loading cases is the same,

then the orthogonal transformation Q is representative of the material symmetry of the body

in the neighborhood of P relative to the reference configuration P0.

P
P

P0

Q

Figure 6.11. An orthogonal transformation of the reference configuration.

Next, consider again the two reference configurations P0 and P ′
0 of Figure 6.10, and

suppose they are associated with material symmetry groups GP0
and GP ′

0
, respectively. It

follows from (6.166) that

T̂P0
(F) = T̂P0

(FQ1) , T̂P ′

0
(F) = T̂P ′

0
(FQ2) , (6.167)

for anyQ1 ∈ GP0
andQ2 ∈ GP ′

0
. Recalling (6.164) and (6.165), one may conclude from (6.167)

that

T = T̂P0
(F) = T̂P ′

0
(FF′−1) = T̂P ′

0
(FF′−1Q2)

= T̂P0
(FQ1) = T̂P ′

0
(FQ1F

′−1) .
(6.168)

Keeping Q1 and F′ fixed and observing that (6.168) holds true for all F implies that

Q2 = F′Q1F
′−1 (6.169)

or, more generally,

GP ′

0
=
{
F′Q1F

′−1 | Q1 ∈ GP0

}
. (6.170)

The relation (6.170) between the symmetry groups of the material is known as Noll’s11 rule

and shows that, for Cauchy-elastic materials, the symmetry groups relative to two different

reference configurations are related according to a tensorial rule involving the transforma-

tion F′ between the two configurations.

11Walter Noll (1925-2017) was a German-born American applied mathematician and mechanician.
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If Equation (6.166) holds true for allQ ∈ O(3), then the Cauchy-elastic material is termed

isotropic relative to the configuration P0. Therefore, an isotropic material is insensitive

to any orthogonal transformation of its reference configuration. Recalling the left polar

decomposition (3.86)2 of the deformation gradient and choosing Q = RT ,12 Equation (6.166)

implies that

T = T̂P0
(F) = T̂P0

(FRT ) = T̂P0
(VRRT ) = T̂P0

(V) . (6.171)

In addition, invariance of T̂P0
under superposed rigid-body motions, in conjunction with (3.194),

leads to

T+ = QT̂P0
(V)QT = T̂P0

(QVQT ) , (6.172)

for all proper orthogonal tensorsQ (hence, given that (6.171) is quadratic inQ, all orthogonal

tensors Q ∈ L(TXR0, TXR0)). Invoking the representation theorem for isotropic tensor-

valued functions of a tensor variable introduced in Section 6.3, it follows that

T = T̂P0
(V) = a0i+ a1V + a2V

2 , (6.173)

where a0, a1, and a2 are functions of the three principal invariants ofV. Clearly, an equivalent

to (6.171) representation of the Cauchy stress for a Cauchy-elastic material is T = T̄P0
(B).

Upon enforcing invariance under superposed rigid-body motions for T̂P0
, in conjunction with

the use of the representation theorem, as discussed immediately above, it is concluded that

T = T̄P0
(B) = b0i+ b1B+ b2B

2 , (6.174)

where, now, b0, b1, and b2 are functions of the three principal invariants of B. Given that

the two Cauchy-Green deformation tensors B and C share the same principal invariants (see

Exercise 3-20), one may exploit (4.118) to transform (6.174) into

S = c0C
−1 + c1I+ c2C , (6.175)

where c0, c1 and c2 are functions of the three principal invariants of C. Invoking the Cayley-

Hamilton theorem of Example 2.4.8, one may equivalently express the second Piola-Kirchhoff

stress as

S = c′0I+ c′1C+ c′2C
2 , (6.176)

12Since R ∈ L(TxR, TXR0) is a two-point tensor while Q ∈ L(TXR0, TXR0) is, by definition, a referential

tensor, the formal choice is Q = RT
ı, where ı ∈ L(TxR, TXR0) is a two-point shifter tensor.
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for a different set of functions c′0, c
′
1 and c′2 of the three principal invariants ofC. Given (3.69)1,

an alternative stress representation to (6.176) is

S = d0I+ d1E+ d2E
2 , (6.177)

where d0, d1, and d2 are functions of the three principal invariants of E. By the same token

and in light of (3.90) and the Cayley-Hamilton theorem, the second Piola-Kirchhoff stress

may be also expressed in terms of the right stretch tensor U as

S = e0I+ e1U+ e2U
2 , (6.178)

where e0, e1, and e2 are functions of the three principal invariants of U.

It is readily concluded from (6.174) and (6.175) that TB = BT and SC = CS hold

true for any isotropic Cauchy-elastic material. This means that these pairs of stress and

deformation tensors are co-axial, that is, owing to the isotropy of the material, the prin-

cipal directions of the (symmetric) stress tensors are unchanged relative to those of the

corresponding (symmetric) deformation tensor.

For a Green-elastic solid, isotropy implies that

Ψ̂(F) = Ψ̂(FQ) , (6.179)

for all Q ∈ O(3). In view of (6.149)3 and (3.50), the preceding condition gives rise to

Ψ̄(C) = Ψ̄(QTCQ) , (6.180)

again, for all Q ∈ O(3). Applying the representation theorem for isotropic real-valued func-

tions of a tensor variable13 to Ψ̄ leads to the conclusion that the strain energy of any isotropic

Green-elastic solid may be expressed as

Ψ = Ψ̃(IC, IIC, IIIC) . (6.181)

Recalling (6.155)1 and using the chain rule it follows that

S = 2ρ0

(

∂Ψ̃

∂IC

∂IC
∂C

+
∂Ψ̃

∂IIC

∂IIC
∂C

+
∂Ψ̃

∂IIIC

∂IIIC
∂C

)

. (6.182)

13This theorem may be viewed as a special case of the previously introduced representation theorem for

tensor-valued functions of a tensor variable, by merely setting Ψi as the tensor function.
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It is easy to show by appeal to (2.54) that

∂IC
∂C

= I ,

∂IIC
∂C

= ICI−C ,

∂IIIC
∂C

= IIICC
−1 ,

(6.183)

(see Exercise 3-33 for a component-based approach to derive (6.183)3). Then, the expression

for the second Piola-Kirchhoff stress in (6.182) becomes

S = 2ρ0

[(

∂Ψ̃

∂IC
+ IC

∂Ψ̃

∂IIC

)

I− ∂Ψ̃

∂IIC
C+

∂Ψ̃

∂IIIC
IIICC

−1

]

. (6.184)

As expected, this function is a special case of (6.175).

Example 6.4.1: Two constitutive laws for compressible isotropic Green-elastic
materials
A commonly employed constitutive law in non-linear elasticity is one is which

S = 2µE+ λ(trE)I , (6.185)

where λ and µ are positive material parameters. This is a generalization of the classical stress-strain law of
linear elasticity (compare to Equation (6.263) later in this chapter), and is known as the generalized Hooke’s14

law or Kirchhoff-Saint-Venant15 law). Taking into account (4.116) and (6.185), the Cauchy stress for this
material may be expressed as

T =
1

J

[
1

2
λ(IB − 3)− µ

]

B+
1

J
µB2 . (6.186)

It is easy to show by appealing to (6.182) that the constitutive law (6.185) may be derived from a strain energy
function per unit referential mass which satisfies

ρ0Ψ̌(IC, IIC, IIIC) =
1

8
λ(IC − 3)2 +

1

4
µ(I2C − 2IC − 2IIC + 3) . (6.187)

Another useful constitutive law in non-linear elasticity is defined by the strain energy function

ρ0Ψ̌(IC, IIC, IIIC) =
µ

2
(IC − 3)− µ ln J +

1

2
λ(J − 1)2 , (6.188)

where, again, λ and µ are positive material parameters. This is the compressible neo-Hookean law. Us-
ing (6.184) and (4.116), it is readily concluded that

S = µ(I−C−1) + λJ(J − 1)C−1 (6.189)

and

T = µ
1

J
(B− i) + λ(J − 1)i . (6.190)

14Robert Hooke (1635–1703) was an English scientist.
15Barré de Saint-Venant (1797–1886) was a French engineer.
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Some non-linearly elastic materials, such as dense rubber and certain soft living tissues

(e.g., arterial walls) are considered practically incompressible. Therefore, it is important to

appreciate the restrictions posed by incompressibility to the functional form of Cauchy- and

Green-elastic materials.

To this end, recall that the pressure p defined in Example 4.6.1(a) is work-conjugate to

the volume change in that

T ·D =

[
1

3
(trT) i+Tdev

]

·
[
1

3
(trD) i+Ddev

]

= (−p) div v +Tdev ·Ddev , (6.191)

where trT = −3p, while Tdev and Ddev are the deviatoric parts of T and D, respectively, see

also Exercise 4-26. In an incompressible isotropic Cauchy-elastic material, the constitutive

equation (6.174) is replaced by

T = −pi+ b1B+ b2B
2 , (6.192)

where p enforces the incompressibility condition div v = 0 (or J = 1), while b1 and b2 are

functions of the first two principal invariants of B (as, now, IIIB = 1). Since the constraint

of incompressibility is enforced, B = Bdev = FdevF
T
dev, where Fdev = J−1/3F is the deviatoric

deformation gradient, see Exercise 3-31. Analogous modifications apply to other functional

representations of the Cauchy stress in a Cauchy-elastic material.

In an incompressible Green-elastic material, one may recall the defining property (6.137)

and the volumetric/deviatoric decomposition in (6.191) to admit a decomposition of the

strain energy rate according to

ρΨ̇c = ρΨ̇− p div v , (6.193)

where Ψc is the strain energy of the incompressible material and Ψ is the strain energy of

an unconstrained Green-elastic material. Applying (6.137) to the strain energy Ψc yields

T ·D = T · L = ρΨ̇c = ρ
∂Ψ̂

∂F
· Ḟ− p div v =

(

ρ
∂Ψ̂

∂F
FT − pi

)

· L , (6.194)

from which is can be shown upon repeating the procedure used to derive (6.145) that

T = −pi+
1

2
ρ




∂Ψ̂

∂F
FT + F

(

∂Ψ̂

∂F

)T


 , (6.195)

where, again, p enforces the incompressibility condition.
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Example 6.4.2: A constitutive law for incompressible isotropic Green-elastic
material
With reference to (6.192) and Example 6.4.1, one may readily conclude from (6.190) that the incompressible
counterpart of the neo-Hookean law is

T = −pi+ µ(B− i) ,

where detB = 1. Note that, with a slight abuse of notation, one may subsume the term −µi into the pressure
part to rewrite the preceding constitutive law equivalently as

T = −pi+ µB . (6.196)

6.4.1 Boundary-value problems of non-linear elasticity

6.4.1.1 Uniaxial stretching

Consider the response to homogeneous uniaxial stretching of non-linearly elastic materials

following the generalized Hookean and neo-Hookean laws of Example 6.4.1. For this purpose,

take a slender three-dimensional specimen of initial length L and stretch it to final length l

while keeping its lateral surfaces fixed, as in Figure 6.12. For simplicity, the major axis of

the slender specimen is aligned with the basis vector e1 which also coincides with E1.

e1,E1

l

L u

Figure 6.12. Homogeneous uniaxial stretching of a slender specimen

Given the homogeneity of the imposed deformation, the motion of the specimen is defined

componentwise as

x1 = X1 +
u

L
X1 , x2 = X2 , x3 = X3 , (6.197)

where u = l − L. If follows from (6.197) that the only non-trivial component of the defor-

mation gradient is F11, which is expressed in referential or spatial form as

F11 = 1 +
u

L
=

1

1− u

l

. (6.198)
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This, in turn, implies, with the aid of (3.50), (3.69), (3.57), and (3.72) that

C11 =
(

1 +
u

L

)2

, E11 =
u

L
+

1

2

(u

L

)2

(6.199)

and, also,

B11 =
1

(

1− u

l

)2 , e11 =
u

l
− 1

2

(u

l

)2

, (6.200)

with all other components attaining trivial values. In addition, note from (6.198) that

J = 1 +
u

L
=

1

1− u

l

. (6.201)

Taking into account (6.199)2, (6.200)1, and (6.201), the stress components along the axis

of stretching for the generalized Hooke’s law are are given according to (6.185) and (6.186)

as

S11 = (λ+ 2µ)

[
u

L
+

1

2

(u

L

)2
]

(6.202)

and

T11 =
1

1− u

l







1

2
λ






1
(

1− u

l

)2 − 1




− µ







+ µ
1

(

1− u

l

)3 . (6.203)

Likewise, for the compressible neo-Hookean law, substituting (6.199)1, (6.200)1, and (6.201)

into (6.189) and (6.190) yields

S11 = µ




1− 1

(

1 +
u

L

)2




+ λ

u

L

1

1 +
u

L

(6.204)

and

T11 = µ
(

1− u

l

)






1
(

1− u

l

)2 − 1




+ λ

u

l

1

1− u

l

. (6.205)

Consider now the special case λ = 0. For the generalized Hooke’s law, Equations (6.202)

and (6.203) imply that in the limit of infinite compression ( u
L

→ −1 or, equivalently,
u
l
→ −∞), S11 → −µ and T11 → 0, the latter of which is physically implausible. On the

other hand, for the same extreme case, Equations (6.204) and (6.205) imply that for the neo-

Hookean material S11 → −∞ and T11 → −∞, as intuitively expected. Likewise, consider

the limit of infinite extension, where u
L
→ ∞ or, equivalently, u

l
→ 1. In this extreme case,
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the same sets of equations imply that S11 → ∞ and T11 → ∞ for the generalized Hookean

material, and also S11 → µ and T11 → ∞ for the neo-Hookean material. Representative

plots of the stress response predicted by the two material models are shown in Figure 6.13.
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Figure 6.13. Homogeneous uniaxial stretching of a slender specimen: Second Piola-Kirchhoff

and Cauchy stress components along the stretch direction for λ = 0 and µ = 1.

6.4.1.2 Rivlin’s cube

Consider a unit cube made of a homogeneous, isotropic, and incompressible non-linearly

elastic material. First, recall the general form of the constitutive equations for isotropic

non-linearly elastic materials in (6.174) and, letting, as a special case, b2 = 0, write

T = −pi+ b1B , (6.206)

where b1(> 0) is a constant, and p is a Lagrange multiplier to be determined upon enforcing

the incompressibility constraint. Note that, in view of (6.196), this is an incompressible

neo-Hookean material.
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Returning to the unit cube, assume that its edges are aligned with the coincident or-

thonormal bases {EA} and {ei} of the reference and current configuration, respectively.

Also, let the cube be loaded by three pairs of equal and opposite tensile forces, all of equal

magnitude, and distributed uniformly on each face.

Taking into account (4.110) and (6.206), one may write

P = J(−pi+ b1B)F−T = −pF−T + b1F , (6.207)

where J = 1 due to the assumption of incompressibility. The tractions, when resolved on

the geometry of the reference configuration, satisfy

pA = PEA = cδiAei , (6.208)

where c > 0 is the magnitude of the normal tractions per unit area in the reference config-

uration. Note that c is the same for all faces of the cube, since, by assumption, the force

on each face is constant and uniform. Therefore, recalling (4.95), one may take the first

Piola-Kirchhoff stress to be constant throughout the cube and equal to

P = (cδiAei)⊗ EA = c(e1 ⊗ E1 + e2 ⊗ E2 + e3 ⊗ E3) . (6.209)

This further implies that the cube is in equilibrium without any body forces.

On physical grounds, solutions for this boundary-value problem are sought in the form

F = λ1e1 ⊗ E1 + λ2e2 ⊗ E2 + λ3e3 ⊗ E3 , (6.210)

subject to the incompressibility condition, expressed in this case as λ1λ2λ3 = 1. Returning

to the constitutive equations, substitute (6.209) and (6.210) into (6.207) to conclude that

c = − p

λi

+ b1λi , i = 1, 2, 3 (6.211)

or

b1λ
2
i = cλi + p , i = 1, 2, 3. (6.212)

Eliminating the pressure p in the preceding equations leads to

b1(λ
2
i − λ2

j) = c(λi − λj) , (6.213)

where i 6= j. This, in turn, means that

λ1 = λ2 or b1(λ1 + λ2) = c ,

λ2 = λ3 or b1(λ2 + λ3) = c , (6.214)

λ3 = λ1 or b1(λ3 + λ1) = c ,
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subject to λ1λ2λ3 = 1.

One solution of (6.214) is obviously

λ1 = λ2 = λ3 = 1 . (6.215)

This corresponds to the cube remaining rigid under the influence of the tensile load. Next,

note, with the aid of (6.214), that it is impossible to find a solution for which all the

values of λi are distinct. Therefore, the only remaining option is to seek solutions for which

λ1 = λ2 6= λ3, λ2 = λ3 6= λ1 and λ3 = λ1 6= λ2. Explore one of these solutions, say

λ1 = λ2 6= λ3, by setting λ3 = λ and noting from (6.214) that

λ2 + λ3 = λ3 + λ1 =
c

b1
= η , (6.216)

where η > 0, so that

λ1λ2λ3 = (η − λ)2λ = 1 . (6.217)

The above equation may be rewritten as

f(λ) = λ3 − 2ηλ2 + η2λ− 1 = 0 . (6.218)

To examine the roots of f(λ) = 0, note that

f ′(λ) = 3λ2 − 4ηλ+ η2 , f ′′(λ) = 6λ− 4η , (6.219)

hence the extrema of f occur at

λ =

{ η

3
where f ′′(

η

3
) = −2η < 0 (maximum)

η where f ′′(η) = 2η > 0 (minimum)
(6.220)

and are equal to

f(
η

3
) =

4

27
η3 − 1 , f(η) = −1 . (6.221)

It is also obvious from the definition of f(λ) in (6.218) that f(0) = −1 and f(∞) = ∞. The

plot in Figure 6.14 depicts the essential features of f(λ). Clearly, a root, say, λ = λ3 > η is

inadmissible, as, according to (6.216), it would lead to λ1 = λ2 = η − λ < 0.

In summary, λ1 = λ2 = λ3 = 1 is always a solution. Furthermore:

1. If 4
27
η3 < 1, there are no additional solutions (Case I).

2. If 4
27
η3 = 1, there is one set of three additional solutions corresponding to λ =

η

3
=

3

√
1
4
< 1 (Case II).
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0

−1

η/3 η

λ

f

Case I

Case IICase III

Figure 6.14. Function f(λ) in Rivlin’s cube

3. If 4
27
η3 > 1, there are two sets of three additional solutions corresponding to the two

roots of f(λ) which are smaller than η (Case III).

Note that, for Case III it is not required that λ3 > 1 in any of the two sets of solutions.

A typical non-trivial deformation of the cube is depicted in Figure 6.15.

X1

X2

X3

Figure 6.15. A solution to Rivlin’s cube (λ1 = λ2 6= λ3, λ3 < 1)

Rivlin’s cube demonstrates the potential loss of uniqueness in the solution of boundary-

value problems of non-linear elasticity, depending on the loading conditions and the material

parameters.

6.5 Non-linearly thermoelastic solid

In the case of a non-linearly thermoelastic solid, one may postulate that the Helmholtz free

energy Ψ and the referential heat flux q0 are of the form

Ψ = Ψ̂(F, θ,G) , q0 = q̂0(F, θ,G) . (6.222)
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It follows from (6.222)1 that the referential statement of the Clausius-Duhem inequality

in (4.178) may be written as

ρ0

(

∂Ψ̂

∂F
· Ḟ+

∂Ψ̂

∂θ
· θ̇ + ∂Ψ̂

∂G
· Ġ
)

+ ρηθ̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 (6.223)

or, upon rearranging terms,

(

ρ0
∂Ψ̂

∂F
−P

)

· Ḟ+ ρ0

(

∂Ψ̂

∂θ
+ η

)

θ̇ + ρ0
∂Ψ̂

∂G
Ġ+ q0 ·

G

θ
≤ 0 . (6.224)

Choosing a homothermal process (that is, taking θ to be constant in referential space, which

also implies that G = 0) for which also Ġ = 0, it is concluded from (6.224) that since Ḟ is

arbitrary (hence can be made equal to −Ḟ), it is necessary that

P = ρ0
∂Ψ̂

∂F
. (6.225)

Next, one may take a time-dependent homothermal process with Ġ = 0. Since θ̇ may be

chosen positive or negative, it follows from (6.224) and (6.225) that

η = −∂Ψ̂

∂θ
. (6.226)

The final choice is to take a homothermal process in which Ġ 6= 0. Since it is also possible

to choose the temperature gradient to be −Ġ, it follows from (6.224), (6.225), and (6.226)

that
∂Ψ̂

∂G
= 0 , (6.227)

which, in light of the original constitutive assumption (6.222), means that

Ψ = Ψ̂(F, θ) . (6.228)

The original Clausium-Duhem inequality (6.224) now reduces to

q0 ·
G

θ
≤ 0 . (6.229)

Following the analysis for the rigid heat conductor in Section 4.9, the preceding inequality

implies that

q̂0(F, θ,0) = 0 . (6.230)
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Recalling the referential statement of energy balance in (4.165), note that

ǫ̇ = Ψ̇ + η̇θ + ηθ̇ =
∂Ψ̂

∂F
· Ḟ+

∂Ψ̂

∂θ
θ̇ + η̇θ + ηθ̇

=
1

ρ0
P · Ḟ+

(

∂Ψ̂

∂θ
+ η

)

θ̇ + η̇θ =
1

ρ0
P · Ḟ+ η̇θ , (6.231)

where use is made of (4.175), (6.225), and (6.226). Now, substituting (6.231) into (4.165)

yields

ρ0θη̇ = ρ0r −Div q0 (6.232)

or

ρ0η̇ = ρ0
r

θ
− Div q0

θ
, (6.233)

which are completely analogous to equations (4.191) and (4.192) obtained for the rigid heat

conductor.

For the non-linearly thermoelastic solid, just like for the rigid heat conductor, it is possible

to formulate a prescription for the identification of the entropy η. Indeed, for a homothermal

process, where g = 0, hence, due to (6.230), also q0 = 0, equation (6.232) reduces to

θη̇ = r . (6.234)

Therefore, one may again integrate from some initial time t0 where the entropy is assumed

to vanish to find that

η(θ) =

∫ t

t0

r

θ
dt , (6.235)

where θ remains spatially homogeneous but varies with time and r is chosen to impose this

homothermal state.

The purely mechanical theory of non-linear elasticity discussed in Section 6.4 may be

recovered by keeping the temperature θ constant (say, equal to θ̄) and considering the con-

stitutive assumption (6.228) for the Helmholtz free energy as defining the strain energy for

this isothermal case, that is,

Ψ = Ψ̂(F, θ̄) = Ψ̂(F) . (6.236)

It is clear from the preceding derivation that, under isothermal conditions, a non-linearly

thermoelastic solid reduces to a Green-elastic (but not necessarily a Cauchy-elastic) solid.
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6.6 Linearly elastic solid

In this section, a formal procedure is followed to obtain the equations of motion and the

constitutive equations for a linearly elastic solid. To this end, start by writing the linearized

version of linear momentum balance as

L[divT;H]0 + L[ρb;H]0 = L[ρa;H]0 . (6.237)

Now, proceed by making the following assumptions: First, let the reference configuration

be Cauchy stress-free. Since, in view of (6.162), one may write T = T̂(F) = T̄(H), this

translates to

T̂(ı) = T̄(0) = 0 . (6.238)

It follows that

L[T;H]0 = T̄(0) +DT(0,H) = DT(0,H) , (6.239)

where

DT(0,H) =

[
d

dω
T̄(0+ ωH)

]

ω=0

= �H . (6.240)

The quantity � is called the elasticity tensor and it is a fourth-order tensor that can be

resolved in components as

� = Cijklei ⊗ ej ⊗ ek ⊗ el (6.241)

on the basis {ei ⊗ ej ⊗ ek ⊗ el}. The product �H in (6.240) is the most general linear

second-order tensor function in H and is expressed as

�H = (Cijklei ⊗ ej ⊗ ek ⊗ el)(Hmnem ⊗ en)

= CijklHmnei ⊗ ej[(ek ⊗ el) · (em ⊗ en)]

= CijklHmnδkmδlnei ⊗ ej

= CijklHklei ⊗ ej . (6.242)

Note that the component representation of the referential displacement gradient in (6.242)

is H = Hijei ⊗ ej, since, as argued in (5.23), the distinction between referential and spatial

gradients is lost under the assumption of infinitesimal deformations.

At this stage, recall that invariance under superposed rigid-body motions of the consti-

tutive function in (6.162) implies that

QT̂(F)QT = T̂(QF) , (6.243)
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for all proper orthogonal tensors Q. Setting F = ı and taking into account (6.238), it is

readily concluded from the preceding equation that

T̂(Q) = 0 , (6.244)

which means that rigid-body rotations result in no stress. Therefore, one may choose a

special such rotation for which Q(t) = i (hence, H(t) = 0) and Q̇(t) = Ω0 (hence, Ḣ = Ω0),

where Ω0 is a constant skew-symmetric tensor. In view of (6.240) and (6.244), one may

conclude that for such a rotation
[
d

dω
T̄(0+ ωḢ)

]

ω=0

= DT(0, Ḣ) = �Ḣ = �Ω0 = 0 . (6.245)

Since Ω0 is an arbitrarily chosen skew-symmetric tensor, this implies that �Ω = 0 for any

skew-symmetric tensor Ω. Recalling (5.45), (6.239), (6.240), and also that the reference

configuration is stress-free, it follows that

L[T;H]0 = DT(0,H) = �(ε+ ω) = �ε = σ , (6.246)

where σ denotes the linear part of the Cauchy stress tensor. Since the distinction between

partial derivatives with respect toX and x disappears in the infinitesimal case (see discussion

in Section 5.1), it is clear that so does the distinction between the referential and spatial

divergence operators. Therefore, in view of (6.246), it is concluded that

D[divT](0,H) = D[DivT](0,H) = DivDT(0,H) = Divσ , (6.247)

where the divergence operator “Div” can be taken out of the differentiation since it is inde-

pendent of it. Given that the reference configuration is assumed stress-free, Equation (6.247)

further implies that

L[divT;H]0 = L[DivT;H]0 = DivL[T;H]0 = Divσ . (6.248)

By way of a second assumption, let the reference configuration be also acceleration-free,

that is, a = ā(0) = 0. Since linear momentum balance holds in the reference configuration,

then the body force should also vanish in the reference configuration, that is, b = b̄(0) = 0.16

Since, according to linear momentum balance, ρ(a−b) balances the divergence of stress and

the latter is linear in H, it follows that

L[ρ(a− b);H]0 = ρ̄(0)(ā− b̄)(0) + [Dρ(0,H)](ā− b̄)(0) + ρ̄(0)D[a− b](0,H) . (6.249)

16It is possible to relax the assumption of vanishing acceleration and instead posit that in the reference

configuration the acceleration is equal to the body force, that is, ā(0) = b̄(0) 6= 0.
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Taking into account (5.50) and also recalling that the reference configuration is acceleration-

and body force-free, as well as that ρ(a− b) is linear in H, it follows from (6.249) that

L[ρ(a− b);H]0 = ρ̄(0)D[a− b](0,H) = ρ0(a− b) . (6.250)

Equations (6.248) and (6.250) jointly imply that the linearized statement of linear momentum

balance (6.237) takes the form

Divσ + ρ0b = ρ0a . (6.251)

In the context of linear elasticity, all measures of stress coincide, that is, the distinction

between the Cauchy stress T and other stress tensors, such as P,S, etc., disappears. To

show this, recall, for instance, the relation between T and P in (4.110) and take the linear

part of both sides to conclude that

L[T;H]0 = L
[
1

J
PFT ;H

]

0

. (6.252)

In light of (6.246), this implies that

σ =
1

J̄(0)
P̄(0)F̄T (0) +

[

D
1

J
(0,H)

]

P̄(0)F̄T (0)

+
1

J̄(0)
[DP(0,H)]F̄T (0) +

1

J̄(0)
P̄(0)[DFT (0,H)] . (6.253)

Recalling that the reference configuration is assumed stress-free (hence, P̄(0) = 0) and that

F̄(0) = ı, the above equation leads to

σ = DP(0,H) , (6.254)

which further implies that

L[P;H]0 = P̄(0) +DP(0,H) = σ , (6.255)

hence,

L[P;H]0 = L[T;H]0 . (6.256)

Similar derivations can deduce the equivalence of other stress tensors in the infinitesimal the-

ory. Therefore, the stress tensor σ is the universal measure of stress within the infinitesimal

theory.
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Returning next to the constitutive law (6.246), write in component form

σij = Cijklεkl . (6.257)

In general, the fourth-order elasticity tensor � possesses 34 = 81 material constants Cijkl as

its components. However, since balance of angular momentum implies that σij = σji and

also, by the definition of ε in (5.35), εij = εji, it follows that

Cijkl = Cjikl = Cijlk = Cjilk , (6.258)

which readily implies that only 6 × 6 = 36 of these components are independent.17 Next,

recalling (6.155)1, note that in the infinitesimal theory, Equation (6.246) may be derived

from a strain energy function Ŵ (ε) per unit volume as

σ =
∂Ŵ

∂ε
, (6.259)

where

W = Ŵ (ε) =
1

2
ε · �ε . (6.260)

It follows from (6.259) and (6.260) that

∂σij

∂εkl
=

∂2Ŵ

∂εij∂εkl
= Cijkl , (6.261)

which, in turn, implies that Cijkl = Cklij. The preceding identity reduces the number of

independent material constants from 36 to 21.18

The number of independent material constants can be further reduced by material sym-

metry. In particular, recall the constitutive equation (6.177) for the isotropic non-linearly

elastic solid, whose linearization yields

σ = d∗0IεI+ d1ε , (6.262)

where d∗0 and d1 are constants. Setting d∗0 = λ and d1 = 2µ, one may rewrite the preceding

equation as

σ = λ(tr ε)I+ 2µε . (6.263)

17To see this, take each pair (i, j) or (k, l) and use (6.258) to conclude that only 6 combinations of each

pair are independent.
18To see this, write the 36 parameters as a 6× 6 matrix and argue that only the terms on and above (or

below) the major diagonal are independent. This leaves 1
2 (36− 6) + 6 = 21 independent terms.
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The material parameters λ and µ are known as the Lamé19 constants of isotropic linear

elasticity. Taking the trace of both sides of (6.263) and assuming that λ+ 2
3
µ 6= 0, it is easily

seen that

tr ε =
1

3λ+ 2µ
trσ . (6.264)

Therefore, as long as µ 6= 0, one may invert (6.263) to find that

ε =
1

2µ

[

σ − λ

3λ+ 2µ
(trσ)I

]

. (6.265)

It is customary to express the preceding stress-strain relations in terms of an alternative

pair of material constants, that is, the Young’s20 modulus E and the Poisson’s21 ratio ν,

where

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
, (6.266)

provided λ+ µ 6= 0, and, inversely,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (6.267)

as long as 1 + ν 6= 0 and 1− 2ν 6= 0. Substituting (6.267) to (6.263), one finds that

σ =
E

(1 + ν)(1− 2ν)

[
ν(tr ε)I+ (1− 2ν)ε

]
. (6.268)

Upon inverting (6.268), it follows that

ε =
1

E

[
(1 + ν)σ − ν(trσ)I

]
, (6.269)

assuming E 6= 0.

6.6.1 Initial/boundary-value problems of linear elasticity

6.6.1.1 Simple tension and simple shear

Consider the case of simple tension along the e3-axis, where σ33 > 0, while all other compo-

nents of the stress are zero. This is clearly an equilibrium state in the absence of body force.

It follows from (6.269) that in an isotropic linearly elastic solid

ε33 =
σ33

E
, ε11 = ε22 = −νσ33

E
, (6.270)

19Gabriel Léon Jean Baptiste Lamé (1795-1870) was a French mathematician.
20Thomas Young (1773–1829) was a British scientist.
21Siméon Denis Poisson (1781–1840) was a French mathematician and physicist.
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while all shearing components of strain vanish. Given (6.270), one may easily conclude that

a simple tension experiment can be used to determine the material constants E and ν as

E =
σ33

ε33
, ν = −ε11

ε33
= −ε22

ε33
. (6.271)

On physical grounds, E > 0, since tensile stress should generate extension in the same

direction, and, also, ν > 0, since practically all materials under simple tension experience

lateral contraction, referred to as the Poisson effect .

In the case of simple shear on the plane of e1 and e2, the only non-zero components

of stress is σ12 = σ21. Again, this is an equilibrium state in the absence of body force.

Recalling (6.269) and (6.267)2, it follows that for an isotropic linearly elastic solid

ε12 =
σ12

2µ
, (6.272)

while all other strain components vanish. The elastic constant µ can be experimentally

measured by arguing that 2ε12 is the change in the angle between infinitesimal material line

elements initially aligned with the basis vectors e1 and e2, see Exercise 5-6. On physical

grounds, one concludes that µ > 0, since shear stress should induce shear strain of the same

sense.

6.6.1.2 Uniform hydrostatic pressure and incompressibility

Suppose that an isotropic linearly elastic solid is in equilibrium under a uniform hydrostatic

pressure σ = −pI, as in Example 4.6.1(a). Taking into account (6.264), it follows that

tr ε = −3p
1

3λ+ 2µ
= −p

1

K
, (6.273)

where, with the aid of (6.267),

K =
3λ+ 2µ

3
=

E

3(1− 2ν)
. (6.274)

The parameter K above is the bulk modulus of elasticity. Equation (6.273) can be used in an

experiment to determine the bulk modulus by noting that, according to (5.47), tr ε = − p

K
is the infinitesimal change of volume due to the hydrostatic pressure p.

It is clear from (6.273) that K > 0, since hydrostatic compression (p > 0) should result

in reduction of the volume. Using (6.274)2, this means that ν ≤ 0.5. An isotropic linearly

elastic material becomes incompressible when ν → 0.5, in which case K → ∞.
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6.6.1.3 Saint-Venant torsion of a circular cylinder

Consider a homogeneous isotropic linearly elastic cylinder in equilibrium, as in Figure 6.16.

The cylinder has length L, radius R, and is fixed at the one end (x3 = 0), while at the

opposite end (x3 = L) it is subjected to a resultant moment Me3 relative to the point with

coordinates (0, 0, L). Also, the lateral sides of the cylinder are assumed traction-free.

e1
e2

e3
eθ

x1

x2

L
M

R
r

Figure 6.16. Circular cylinder subject to torsion

Due to symmetry, it is assumed that the cross-section remains circular and that plane

sections of constant x3 remain plane after the induced deformation. With these assumptions

in place, assume that the displacement of the cylinder may be written as

u = αx3reθ , (6.275)

where α is the angle of twist per unit x3-length and r =
√

x2
1 + x2

2. Recalling, again with

reference to Figure 6.16, that eθ = −x2

r
e1 +

x1

r
e2 (see also Appendix A), one may rewrite

the displacement using rectangular Cartesian coordinates as

u = α(−x2x3e1 + x1x3e2) . (6.276)

It follows from (5.35) that the infinitesimal strain tensor has components

[εij ] =
1

2
α






0 0 −x2

0 0 x1

−x2 0




 , (6.277)

which confirms that the motion of the cylinder is isochoric. Hence, according to (6.263) the

stress tensor has components

[σij] = µα






0 0 −x2

0 0 x1

−x2 x1 0




 . (6.278)
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It can be readily demonstrated with reference to (6.278) that all equilibrium equations

are satisfied in the absence of body forces. Further, for the lateral surfaces, the tractions

vanish, since

[ti] = [σij ][nj ] = µα






0 0 −x2

0 0 x1

−x2 x1 0






1

R






x1

x2

0




 =






0

0

0




 . (6.279)

On the other hand, the traction at x3 = L is

[ti] = [σij][nj ] = µα






0 0 −x2

0 0 x1

−x2 x1 0











0

0

1




 = µα






−x2

x1

0




 . (6.280)

Therefore, upon setting x1 = r cos θ and x2 = r sin θ in the preceding equation, the resultant

force is given by

∫

x3=L

[ti] dA = µα

∫ 2π

0

∫ R

0

r






− sin θ

cos θ

0




 r drdθ

= µα
R3

3

∫ 2π

0






− sin θ

cos θ

0




 dθ = µα

R3

3






cos θ

sin θ

0






2π

0

=






0

0

0




 ,

(6.281)

where use is made of (A.8). Moreover, the magnitude M of the resultant moment with

respect to the origin of the Cartesian coordinate system is

M =

∫

x3=L

(x1e1 + x2e2 + Le3)× µα(−x2e1 + x1e2) dA · e3

= µα

∫

x3=L

(x2
1 + x2

2) dA = µα

∫ 2π

0

∫ R

0

r2 rdrdθ = µα
πR4

2
= µIα ,

(6.282)

where I =
πR4

2
is the polar moment of inertia of the circular cross-section.

6.6.1.4 Plane waves in an infinite solid

Consider an infinite solid made of a homogeneous isotropic linearly elastic material. Suppose

that a harmonic longitudinal wave is transmitted along the x1-axis resulting in a displacement

field of the general form

u(X, t) = a sin (klX1 ± ωt)e1 . (6.283)
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Here, a is the amplitude of the wave, kl is the wave number for the longitudinal wave, and ω

is the frequency. Alternatively, ll = 1/kl is the wavelength and T = 1/ω is the period of the

wave. The amplitude is specified, such that a ≪ 1 in order to enforce the assumption of

infinitesimal deformations in the elastic medium. The wave number kl and the frequency ω

are assumed positive, but the relation between them is to be determined.

If the displacement field in (6.283) is to be sustained by the elastic solid, then it must

satisfy the equations of linear momentum balance (6.251), with the stress according to (6.263)

in terms of the infinitesimal strain in (5.35). Equivalently, one may directly apply (6.283)

to Navier’s equations of motion deduced in Exercise 6-18. It is easy to confirm that, upon

ignoring the body force, the linear momentum balance equations are identically satisfied

along the e2- and e3-direction. However, along the e1-direction, linear momentum balance

reduces to the (longitudinal) wave equation

(λ+ 2µ)u1,11 = ρ0ü1 , (6.284)

hence, given the form of u1 in (6.283),

kl =
ω

cl
, (6.285)

where

cl =

√

λ+ 2µ

ρ0
(6.286)

is the longitudinal wave speed. Therefore, the relation (6.285) constitutes a necessary condi-

tion for the transmission of the longitudinal wave through the infinite elastic medium.

Next, consider a harmonic transverse wave along the x1-axis corresponding to the dis-

placement field

u(X, t) = a sin (ktX2 ± ωt)e1 , (6.287)

where kt is the wave number for the transverse wave. Repeating the procedure outlined

above leads to the (transverse) wave equation

µu1,22 = ρ0ü1 , (6.288)

which, on account of (6.287), yields the condition

kt =
ω

ct
, (6.289)
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in terms of the transverse wave speed ct given by

ct =

√
µ

ρ0
. (6.290)

It is noteworthy that, given (6.267), the ratio between the two wave speeds may be

expressed as

cl
ct

=

√

λ+ 2µ

µ
=

√

2(1− ν)

1− 2ν
, (6.291)

hence it depends only on Poisson’s ratio ν and is greater than one if 0 ≤ ν ≤ 0.5. This

points to an alternative method for estimating ν, which is specifically applicable to physical

bodies whose domain may be adequately modeled as infinite.

6.7 Viscoelastic solid

Most materials exhibit memory effects, that is, their current state of stress depends not only

on the current state of deformation, but also on the deformation history.

Consider first a broad class of materials with memory, for which the Cauchy stress is

given by

T(X, t) = T̂
(
H
τ≤t

[F(X, τ)]
)
. (6.292)

This means that the Cauchy stress at time t for a material particle P which occupies point X

in the reference configuration depends on the history of the deformation gradient of that point

up to (and including) time t. Materials that satisfy the constitutive law (6.292) are called

simple.

Invoking invariance under superposed rigid-body motions for the constitutive law (6.292)

and suppressing, in the interest of brevity, the explicit reference to the dependence of func-

tions on X, it is concluded that

Q(t)T̂
(
H
τ≤t

[F(τ)]
)
QT (t) = T̂

(
H
τ≤t

[Q(τ)F(τ)]
)
, (6.293)

for all proper orthogonal tensor functions Q(τ), where τ ∈ (−∞, t]. Applying the polar

decomposition (3.86) to F(τ) and choosing Q(τ) = RT (τ), for all τ ∈ (−∞, t], it follows

that

RT (t)T̂
(
H
τ≤t

[F(τ)]
)
R(t) = T̂

(
H
τ≤t

[U(τ)]
)
. (6.294)
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Equation (6.294) can be readily rewritten as

T(t) = R(t)T̂
(
H
τ≤t

[U(τ)]
)
RT (t) (6.295)

or, equivalently,

T(t) = F(t)U−1(t)T̂
(
H
τ≤t

[U(τ)]
)
U−1(t)FT (t) . (6.296)

Upon recalling (4.116)2, this, in turn, implies that

S(t) = J(t)U−1(t)T̂( H
τ≤t

[U(τ)])U−1(t) = Ŝ( H
τ≤t

[U(τ)]) . (6.297)

In view of (3.69) and (3.90), one may alternatively write

S(t) = S̄
(
H
τ≤t

[C(τ)]
)

= Š
(
H
τ≤t

[E(τ)]
)
. (6.298)

Next, proceed to distinguishing between the past (τ < t) and the present (τ = t) in

referring to the measures of deformation that enter the preceding constitutive laws. To this

end, define the Lagrangian strain difference

Et(s) = E(t− s)− E(t) , (6.299)

where, obviously, Et(0) = 0. Clearly, for any given time t, the variable s ≥ 0 is probing the

history of the Lagrangian strain looking further in the past as s increases. Now, one may

rewrite (6.298)2 as

S(t) = Š
(
H
τ≤t

[E(τ)]
)

= Š
(
H̄
s≥0

[Et(s)],E(t)
)
. (6.300)

Then, define the elastic response function Se as

Se
(
E(t)

)
= Š

(
0,E(t)

)
(6.301)

and the memory response function Sm as

Sm
(
H̄
s≥0

[Et(s)],E(t)
)

= Š
(
H̄
s≥0

[Et(s)],E(t)
)
− Š

(
0,E(t)

)
. (6.302)

Therefore, the overall stress response becomes

S(t) = Se
(
E(t)

)
+ Sm

(
H̄
s≥0

[Et(s),E(t)]
)
. (6.303)

The first term on the right-hand side of (6.303) represents the stress which depends ex-

clusively on the present state of the Lagrangian strain, while the second term reflects the
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dependence of the stress on past Lagrangian strain states. Note that, by definition, the stress

during a time-independent deformation, that is, when E(t) = E0 for all t, with E0 a con-

stant, is equal to S(t) = Se(E0), or, equivalently, S
m
(
H̄
s≥0

[0],E(t)
)
= 0, as seen immediately

from (6.302) with the aid of (6.299).

The constitutive equation (6.303) describes a viscoelastic solid. For such a material, Sm is

rate-dependent (that is, it depends on the rate Ė of the Lagrangian strain) and also exhibits

fading memory. The latter means that the effect on the stress at time t of the deformation at

time t−s (s > 0) diminishes as s increases. This condition can be expressed mathematically

as

lim
δ→∞

Sm
(
H̄
s≥0

[Eδ
t (s)],E(t)) = 0 , (6.304)

where Eδ
t (s) is the static continuation of Et(s) by δ(> 0), defined as

Eδ
t (s) =

{

0 if 0 ≤ s < δ

Et(s− δ) if δ ≤ s < ∞
. (6.305)

With reference to Figure 6.17, it is seen that the static continuation is a time shift in the

s
δ

Et(s)Eδ
t (s)

Figure 6.17. Static continuation Eδ
t (s) of Et(s) by δ.

argument Et(s) of the memory response function Sm by δ. Therefore, the fading memory

condition (6.304) implies that, as time elapses, the effect of earlier Lagrangian strain states

on Sm diminishes and, ultimately, disappears altogether. Condition (6.304) is often referred

to as the relaxation property. This is because it implies that any time-dependent Lagrangian

strain E(t) which reaches a steady-state results in memory response which ultimately relaxes

to zero memory stress (plus, possibly, elastic stress), see Figure 6.18.

Under certain regularity conditions, the memory response function Sm can be reduced to

a linear functional in Et(s) of the form

Sm
(
H̄
s≥0

[Et(s)],E(t)
)

=

∫ ∞

0

�
(
E(t), s

)
Et(s) ds , (6.306)
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s

t tt1 t1t2 t2

E

Et1(s)Et2(s)

S

Se

Figure 6.18. An interpretation of the relaxation property

where �
(
E(t), s

)
is a fourth-order tensor function of E(t) and s. Of course, �(E(t), s) needs

to be chosen so that Sm satisfy the relaxation property (6.304), which necessitates that

lim
δ→∞

∫ ∞

0

�
(
E(t), s

)
Eδ

t (s) ds = 0 . (6.307)

Now, let E(t) be twice-differentiable in time. Upon the Taylor expansion of Et(s) in time

around t− s, one finds that

Et(s) = E(t− s)− E(t) = −sĖ(t− s) + o(s2) . (6.308)

Ignoring the second-order term in (6.308), which is tantamount to neglecting long-term

memory effects due to the non-uniformity in the rate of Lagrangian strain, one may substi-

tute Et(s) in (6.306) to find that

Sm
(
H̄
s≥0

[Et(s)],E(t)
)

=

∫ ∞

0

�
(
E(t), s

)
[−sĖ(t− s)] ds =

∫ ∞

0

�̄
(
E(t), s

)
Ė(t− s) ds ,

(6.309)

where

�̄
(
E(t), s

)
= −s�

(
E(t), s

)
. (6.310)

Conversely, upon the Taylor expansion of Et(s) in time around t, one finds that

Et(s) = E(t− s)− E(t) = −sĖ(t) + o(s2) , (6.311)

which leads to

Sm
(
H̄
s≥0

[Et(s)],E(t)
)

=

∫ ∞

0

�
(
E(t), s

)
[−sĖ(t)] ds

=

[

−
∫ ∞

0

�
(
E(t), s

)
s ds

]

Ė(t) = �
(
E(t)

)
Ė(t) , (6.312)
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where

�
(
E(t)

)
= −

∫ ∞

0

�
(
E(t), s

)
s ds . (6.313)

In the following two examples, the general constitutive framework developed here is rec-

onciled with the classical one-dimensional viscoelasticity models of Maxwell22 and Kelvin23-

Voigt24, under the assumption of infinitesimal deformations.

Example 6.7.1: The Maxwell model
The figure below depicts the Maxwell model of a linear spring with constant E and a linear dashpot with
constant η connected in series.

σ σ

E η

In this case, the constitutive law becomes

ε̇ =
σ̇

E
+
σ

η
, (6.314)

with the accompanying initial condition taken to be σ(0) = 0. The general solution of (6.314) is

σ(t) = c(t)e−
E
η
t ,

which, upon substitution into (6.314), leads to

ċ(t) = Ee
E
η
tε̇(t) .

This, in turn, may be integrated to yield

c(t) = c(0) +

∫ t

0

Ee
E
η
τ ε̇(τ) dτ .

Noting that the assumed initial condition results in c(0) = 0, one may write that

σ(t) =

[∫ t

0

Ee
E
η
τ ε̇(τ) dτ

]

e−
E
η
t =

∫ t

0

Ee
E
η
(τ−t)ε̇(τ) dτ = −

∫ 0

t

Ee−
E
η
sε̇(t− s) ds =

∫ t

0

Ee−
E
η
sε̇(t− s) ds .

Clearly, the stress response of the Maxwell model falls within the constitutive framework of (6.303), where the
elastic response function vanishes identically and the memory response can be deduced from (6.309).

Example 6.7.2: The Kelvin-Voigt model
The Kelvin-Voigt model comprises a linear spring and a linear dashpot in parallel, where the spring constant is
E and the dashpot constant is η, as in the figure. It follows that the uniaxial stress σ is related to the uniaxial

22James Clerk Maxwell (1831–1879) was a Scottish physicist.
23William Thomson, 1st Baron Kelvin (1824–1907) was a British physicist and engineer.
24Woldemar Voigt (1850–1919) was a German physicist.
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strain ε by
σ = Eε+ ηε̇ . (6.315)

σ σ

E

η

Clearly, this law is a simple reduction of (6.303), where the memory response is obtained from a one-
dimensional counterpart of (6.312).

6.8 Exercises

6-1. Consider the homogeneous motion χ in the form

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ = γ(t) is a non-negative function with γ(0) = 0, and all components are taken with
reference to a fixed orthonormal basis (see Exercise 3-8).

A body which undergoes this motion is made of a material that satisfies the constitutive
equation

T = aB + bD + cW ,

where a, b and c are material constants, B is the left Cauchy-Green deformation tensor, D
is the rate of deformation tensor, and W is the vorticity tensor.

(a) Identify the physical dimensions (in terms of length L, mass M, and time T) of all con-
stants in the constitutive equation for T.

(b) Invoke invariance under superposed rigid-body motions to appropriately reduce the
constitutive equation.

(c) For the given motion, determine the components of the Cauchy stress tensorT sustained
by this material.

(d) For the given motion, determine the components of the first Piola-Kirchhoff stress
tensor P and the second Piola-Kirchhoff stress tensor S sustained by this material.

6-2. Suppose that the pressure p of an elastic fluid in the absence of heat supply is given by

p = kργ ,

ME185



246 Constitutive theories

where k( 6= 0) and γ(> 1) are material constants. Show that in this case the internal energy
of the ideal fluid is given by

ǫ =
k

γ − 1
ργ−1 + constant .

6-3. Recall that the Cauchy stress tensor T for an elastic fluid is expressed as

T = −p I ,

where p = p̂(ρ) is a given function of the mass density ρ. Consider the steady motion of
an elastic fluid under the influence of body forces b derivable from a real-valued potential
function β(x) as

b = − gradβ .

Assume that the motion takes place at the absence of heat supply and that the heat flux
vector q vanishes identically.

(a) Use the local form of energy balance to conclude that

ρǫ̇ = T ·D ,

where ǫ denotes the internal energy.

(b) Starting from the mechanical energy balance theorem, conclude that the stress power
T ·D takes the form

T ·D = −ṗ + p
ρ̇

ρ
− ρβ̇ − 1

2
ρ ˙v · v .

(c) Use the results of part (a) and (b) to conclude that

d

dt

(

ǫ +
p

ρ
+ β +

1

2
v · v

)

= 0 ,

which implies that the quantity H defined as

H = ǫ +
p

ρ
+ β +

1

2
v · v

remains constant along a particle path. The above result is often referred to as Bernoulli’s
theorem.

(d) Obtain a special case of Bernoulli’s theorem assuming that the fluid is incompressible
and letting the potential function β be defined as

β(x) = g · x ,

where g is a constant vector.
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6-4. Recall that, under superposed rigid-body motions, the position x+ of a particle is given by

x+ = Qx+ c ,

where x is the position of the same particle in the original deformed configuration, Q(t) is a
proper-orthogonal tensor, and c(t) is a vector.

(a) Verify that the velocity v transforms under superposed rigid-body motions as

v+ = Qv + Q̇x+ ċ .

(b) Consider two bodies that are sliding past each other and are in contact at a point P
at time t, as in the figure. Suppose that frictional traction tf on the contact point is

body 1 body 2P

constitutively specified as
tf = t̂f (v1,v2) ,

as a function of the velocities v1 and v2 of the two bodies at P . Show that invariance
under superposed rigid-body motions requires that

t̂f (v
+
1 ,v

+
2 ) = Qt̂f (v1,v2) .

(c) Use the results of parts (a) and (b) to argue that

tf = t̄f (v1 − v2) .

(d) Taking into account the results of parts (a)–(c), show that

Qt̄f (v1 − v2) = t̄f
(
Q(v1 − v2)

)
.

6-5. Consider an incompressible Newtonian viscous fluid and let P be a region occupied by a part
of the fluid in the current configuration.

(a) Use the general theorem of mechanical energy balance to show that

d

dt

∫

P

1

2
ρ0v · v dv + 2µ

∫

P
D ·D dv =

∫

P
ρ0b · v dv +

∫

∂P
t · v da ,

where the material constant µ is assumed positive.
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(b) Let R be the (finite) region occupied by the fluid in the current configuration. If v
vanishes on ∂R, show that, in the absence of body force,

d

dt

∫

R

1

2
ρ0v · v dv ≤ 0 .

Comment on the physical interpretation of the above result.

6-6. Consider an incompressible Newtonian viscous fluid which is contained in a fixed and bounded
region R in space, such that at all times

v = 0 on ∂R .

Show that, in this case, the stress power S, defined over the region R as

S(R) =

∫

R
T ·D dv ,

can be also written as

S(R) = 2µ

∫

R
W ·W dv ,

indicating that the stress power is exclusively due to the vorticity tensor.

6-7. The steady planar flow of a Newtonian viscous fluid involves a velocity field v, whose com-
ponents with reference to an orthonormal basis {e1, e2, e3} are written as

v1 =
ρ0
ρ
Ψ,2 ,

v2 = −ρ0
ρ
Ψ,1 ,

v3 = 0 .

In the above equations Ψ = Ψ(x1, x2) is a real-valued function, ρ0 is the homogeneous mass
density in the reference configuration, and ρ is the mass density in the current configuration.

(a) Show that conservation of mass is satisfied identically.

(b) Derive a partial differential equation involving Ψ and ρ under the assumption that the
flow is irrotational.

(c) Simplify the partial differential equation obtained in part (b) for the case where the
fluid is incompressible.

6-8. Recall that the spatial velocity gradient tensor L is uniquely decomposed into the (symmetric)
rate-of-deformation tensor D and the (skew-symmetric) vorticity tensor W. Also, recall that
the vorticity vector w is the axial vector of W and is related to the velocity according to
w = 1

2 curlv.

(a) Assuming that the material is incompressible, show that

divD = − curlw .
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(b) Invoke the result in part (a) to show that the linear momentum balance equations for
an incompressible Newtonian viscous fluid can be written as

− grad p − 2µ curlw + ρb = ρv̇ ,

where ρ is the mass density, b the body force vector per unit mass, µ the constant
viscosity coefficient and p the pressure. Conclude from the above that, in the case of
an irrotational flow, the linear momentum equations of an incompressible Newtonian
viscous fluid coincide with the respective equations for an incompressible inviscid fluid.

6-9. Consider a compressible Newtonian viscous fluid which occupies the region R0 defined as

R0 =
{
(x1, x2, x3) | x3 > 0

}
.

The fluid is initially at rest and is set in motion at time t = 0, so that along the bounding
plane x3 = 0 the prescribed velocity is expressed as

vp(t) = Ue1 , (t > 0) ,

where U > 0 is a scalar, and all components are referred to an orthonormal basis {e1, e2, e3}.

(a) Assuming that the velocity profile is of the general form

v = v(x3, t) e1 , (t > 0) ,

compute the components of the acceleration vector, the rate of deformation tensor and
the Cauchy stress tensor.

(b) Use the assumptions and results of part (a) to show that, in the absence of body forces,
the equations of motion reduce to

v,33 =
ρ

µ
v,t ,

where the material constant µ is assumed positive. Notice that the above equation is
identical in form to the one-dimensional heat equation.

(c) Let v be written as
v(x3, t) = f(η) ,

where

η =

√
ρ

µt
x3 .

Argue that the initial condition

v(x3, 0) = 0 , (x3 > 0) ,

and the boundary conditions

lim
x3→0

v(x3, t) = U , lim
x3→∞

v(x3, t) = 0 ,

ME185



250 Constitutive theories

apply, and use them to show that the function f should satisfy the differential equation

d

dη

(

exp (η2/4)
df

dη

)

= 0 ,

with boundary conditions

f(0) = U , f(∞) = 0 .

(d) Integrate the differential equation obtained in part (c) to find

f = U
(

1 − 1√
π

∫ η

0
exp (−ζ2/4) dζ

)

.

The above problem is known as Stokes’ first problem.

Note: Recall the identity

(∫ ∞

0
e−z2 dz

)2

=
π

4
.

6-10. Recall that the spatial form of mechanical energy balance is expressed as

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
t · v da , (†)

where P denotes a region (with smooth boundary ∂P) occupied by part of a continuum in
the current configuration.

(a) Starting from (†), obtain a referential form of mechanical energy balance by appropri-
ately rewriting all domain and boundary integrals over the images P0 and ∂P0 of P and
∂P, respectively, in the reference configuration.

(b) Admit the existence of a strain energy function Ψ = Ψ̂(F) per unit mass in the reference
configuration, such that the stress power is equal to the mass density ρ0 times the
material time derivative of Ψ. Show that the first Piola-Kirchhoff stress tensor is directly
obtained as

P = ρ0
∂Ψ̂

∂F
.

(c) Suppose that the continuum in the reference configuration occupies a finite region R0

and, subsequently, undergoes a motion in the absence of body forces, such that at all
times

p · v = 0 on ∂R0 ,

where p = PN, and N is the outer unit normal to ∂R0. Conclude that the total energy
E, defined as

E =

∫

R0

(ρ0Ψ +
1

2
ρ0v · v) dV ,

remains constant.
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6-11. Consider a homogeneous Green-elastic body at rest in the absence of body forces, and let
Ψ = Ψ̂(F) be the strain energy function per unit mass in the reference configuration.

(a) Show that

Div (ρ0ΨI− FTP) = 0 .

The quantity ρ0ΨI− FTP is called the Eshelby stress tensor.

(b) Argue that the Eshelby stress tensor is symmetric when the material is isotropic.

(c) Use the result of part (a) to conclude that given any region P0 of the body,

∫

∂P0

(ρ0ΨN − FTp) dA = 0 ,

where p = PN, and N is the outward unit normal to the boundary ∂P0.

6-12. Show that the Mandel stress SM in Exercise 4-29 is symmetric for all isotropic elastic ma-
terials.

6-13. Recall that Green-elastic materials are characterized by the existence of a strain energy
function Ψ = Ψ̄(C) per unit referential mass, such that the second Piola-Kirchhoff stress is
defined as

S = 2ρ0
∂Ψ̄

∂C
,

where ρ0 is the mass density in the reference configuration and C is the right Cauchy-Green
deformation tensor.

Let the strain energy function for a given Green-elastic material be defined by

ρ0Ψ̄ =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)2 ,

where IC = trC, J = (detC)1/2 and λ, µ are material constants. Such a material is referred
to as compressible neo-Hookean.

(a) Find an expression for the second Piola-Kirchhoff stress of a compressible neo-Hookean
material in terms of C, λ and µ.

(b) Use the result of part (a) to find an expression for the Cauchy stress of a compress-
ible neo-Hookean material in terms of B, λ and µ, where B is the left Cauchy-Green
deformation tensor.

(c) Linearize the constitutive equation of either part (a) or part (b) relative to the reference
configuration to deduce the stress-strain relation

σ = 2µε+ λ(tr ε)I

of isotropic linear elasticity, where ε is the infinitesimal strain tensor, σ the stress tensor
of the infinitesimal theory, and I the identity tensor.
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6-14. Consider a non-linearly elastic material with stored energy Ψ = Ψ̂(F) per unit mass.

(a) Show that

T = ρ
∂Ψ̂(F)

∂F
FT .

(b) Suppose that, under superposed rigid-body motions, the strain energy function remains
invariant, that is

Ψ̂(F) = Ψ̂(QF) ,

for all proper orthogonal tensors Q = Q(t). Invoke invariance to conclude that

∂Ψ̂(F)

∂F
· Ḟ =

∂Ψ̂(QF)

∂(QF)
· (Q̇F+QḞ) ,

for all proper orthogonal tensors Q = Q(t).

(c) Taking into account the result of part (b), choose an appropriate superposed rigid-body
motion to deduce that

∂Ψ̂(F)

∂F
FT ·Ω = 0 ,

for all skew-symmetric tensors Ω.

(d) What does the result of part (c) imply for the relation between invariance of the stored
energy function under superposed rigid-body motions and the balance of angular mo-
mentum?

6-15. Consider a two-dimensional incompressible continuum which, when unstressed, occupies a
square region R0 of side a, and suppose that it is formed through a pair of convergent rigid
walls into a rectangular region R, as shown in the figure. Further, assume that the body is
in equilibrium without body forces and its deformation is spatially homogeneous.

a

a a/2

b

R0 R

(a) Determine the length b of the deformed configuration of the body.

(b) Find the deformation gradient F, the left Cauchy-Green deformation tensor B, and the
Almansi (Eulerian) strain tensor e at any point of the body.

(c) Assume that the material is homogeneous and elastic, and, further, obeys the neo-
Hookean law, according to which the Cauchy stress T is given by

T = −pi+ µB ,

where µ is a (given) material parameter, p is a (yet unknown) pressure, and i is the
spatial second-order identity tensor. Determine p as a function of µ and the deformation.

ME185



Exercises 253

(d) Taking into account the result of part (c), find the traction acting on the body along
any one of its two horizontal edges.

6-16. Repeat the analysis in Section 6.4.1.1 for volume-preserving uniaxial stretching, such that

x1 = X1 +
u

L
X1 , x2 =




1

1 +
u

L





1/2

X2 , x3 =




1

1 +
u

L





1/2

X3 ,

where all components are taken relative to coincident orthonormal bases {EA} and {ei} in
the reference and current configuration, respectively. In particular:

(a) Find the non-trivial components of the deformation gradient F and confirm that the
motion is volume-preserving.

(b) Find the non-trivial components of the Cauchy-Green deformation tensors C and B, as
well as those of the strain tensors E and e.

(c) Write the stress components S11 and T11, assuming that the material obeys the gener-
alized Hooke’s law.

(d) Write the stress components S11 and T11, assuming that the material obeys the neo-
Hookean law.

(e) For the special case λ = µ = 1, plot the component S11 for each of the material laws
in parts (d) and (e) as a function of u

L and, likewise, the component T11 as a function
of u

l .

6-17. Consider a body in equilibrium at the absence of body forces and let it occupy in its reference
configuration the region R0 with boundary ∂R0. Recall that the mean first Piola-Kirchhoff
stress P̄ and deformation gradient F̄ are defined respectively as

P̄ =
1

V

∫

R0

P dV , F̄ =
1

V

∫

R0

F dV ,

where V is the volume of R0.

(a) Using the equilibrium equation, the preceding definitions of the mean stress and defor-
mation gradient, and the divergence theorem, show that

1

V

∫

R0

P · F dV − P̄ · F̄ =
1

V

∫

∂R0

(p− P̄N) · (x− F̄X) dA , (†)

where p is the referential traction vector, and X, x are the positions of a material point
in the reference and current configuration, respectively.

(b) Suggest two distinct sets of boundary conditions on ∂R0 for which equation (†) reduces
to

1

V

∫

R0

P · F dV = P̄ · F̄ . (‡)

This is known as the Hill-Mandel condition.
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(c) State in a sentence the meaning of equation (‡).

6-18. Consider a homogeneous isotropic linearly elastic solid, and let u = uiei be the displacement
vector resolved on a fixed orthonormal basis {e1, e2, e3}. Show that the displacement field
satisfies Navier’s equations of motion,

µ div(gradu) + (λ + µ) grad(divu) + ρ0b = ρ0ü ,

where λ and µ are the Lamé constants.

6-19. For a homogeneous linearly elastic solid, the strain energy per unit volume is given by

W =
1

2
Cijklεijεkl ,

where Cijkl are the components of the fourth-order elasticity tensor.

(a) Obtain a special form of W for the case of an isotropic material (express W in terms
of the Lamé constants λ and µ).

(b) Decompose the components εij into their spherical and deviatoric parts, and argue that
positive-definiteness of the elasticity tensor implies that

µ > 0 , λ +
2

3
µ > 0 .

(c) Use the inequalities obtained in part (b) to derive corresponding restrictions on the
bulk modulus K, Young’s modulus E, and Poisson’s ratio ν.

6-20. Let an isotropic linearly elastic solid with Lamé constants λ and µ be subject to antiplane
shear, as defined in Exercise 3-27.

(a) Linearize the expression for the Lagrangian strain E to deduce the components of the
infinitesimal strain tensor ε.

(b) Find the components of the stress tensor σ. Under what condition can this motion be
sustained without any body force?

6-21. Consider a deformable continuum in the shape of an infinitely long thick-walled cylinder
of inner radius Ri and outer radius Ro, which is made of a homogeneous isotropic linearly
elastic material. A fixed orthonormal basis {e1, e2, e3} is chosen so that the major axis of
the cylinder lies along e3. In the absence of body forces, the cylinder is subjected to internal
pressure pi and external pressure pe, and is assumed to undergo a radially symmetric motion
in the (x1, x2)-plane.

(a) Use cylindrical polar coordinates (r, θ, x3), where

x1 = r cos θ , x2 = r sin θ ,
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x1

x2

r
θ

to conclude that, if the effects of inertia are neglected, the boundary-value problem
yields a single non-trivial displacement equation of motion, in the form

d

dr

[1

r

d

dr
(rur)

]

= 0 . (†)

In the above equation, the radial displacement ur at a point is defined as the projection
of the displacement vector u in the direction of the position vector x of the point.

(b) Integrate (†) twice to obtain a general expression for the radial displacement as

ur = Ar +
B

r
,

where A and B are undetermined constants. Also, calculate the corresponding polar
components of the infinitesimal strain tensor and the stress tensor.

(c) Use the stress boundary conditions at r = Ri and r = Ro to determine the constants A
and B.

6-22. Let the Cauchy stress tensor T in a continuum satisfy the constitutive equation

T = T̂(F, Ḟ) ,

where F is the deformation gradient.

(a) Invoke invariance under superposed rigid-body motions to reduce the above constitutive
equation to

T = RT̂(U, U̇)RT ,

where R is the rotation tensor and U is the right stretch tensor, both obtained from
the deformation gradient F by using the polar decomposition theorem.

(b) Argue that the constitutive equation of part (a) may be also written in the form

S = Ŝ(E, Ė) .
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6-23. Consider a body that undergoes simple shear of the form

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ(t) is a non-negative function defined as

γ(t) =

{
αt for 0 ≤ t < 1/α
1 for t > 1/α

,

with α > 0, and where all components are resolved on fixed orthonormal bases {EA} and
{ei} in the reference and current configuration, respectively.

(a) Assume that the body is made of a viscoelastic material for which the second Piola-
Kirchhoff stress S is defined as

S = Se + Sm ,

where
Se = λ(trE)I+ 2µE

and
Sm = ηĖ ,

and λ, µ, η are positive constants.

Determine the shear stress S12 for this material and plot S12 against the shear strain
E12 for λ = µ = 1, η = 0.1 and α = 0.1, 1.0 and 10.0.

(b) Repeat the analysis of part (a) for a viscoelastic material in which the stress is consti-
tutively defined as

S(t) = E

∫ ∞

0
e−ζsĖ(t− s) ds ,

where E = 1, ζ = 10.0, and S(0) = 0.
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Chapter 7

Multiscale modeling

It is sometimes desirable to relate the theory of continuous media to theories of particle

mechanics. This is, for example, the case, when one wishes to analyze metals and semi-

conductors at very small length and time scales, at which the continuum assumption is not

unequivocally satisfied. In such cases, multiscale analyses offer a means for relating kinematic

and kinetic information between the continuum and the discrete system.

7.1 The virial theorem

The virial theorem is a central result in the study of continua whose constitutive behavior

is derived from an underlying microscale particle system.

Preliminary to the derivation of the theorem, recall from Exercise 4-21(b), that the mean

Cauchy stress T̄ in a material region P satisfies the equation

(volP)T̄ =

∫

∂P
t⊗ x da−

∫

P
divT⊗ x dv . (7.1)

Taking into account (4.75), the preceding equation may be rewritten as

(volP)T̄ =

∫

∂P
t⊗ x da+

∫

P
ρ(b− a)⊗ x dv

=

∫

∂P
t⊗ x da+

∫

P
ρb⊗ x dv − d

dt

∫

P
ρẋ⊗ x dv +

∫

P
ρẋ⊗ ẋ dv . (7.2)

Next, define the (long) time-average 〈φ〉 of a time-dependent quantity φ = φ(t) as

〈φ〉 = lim
T→∞

1

T

∫ t0+T

t0

φ(t) dt , (7.3)
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and note that, as long the rigid translations are suppressed,

〈 d

dt

∫

P
ρẋ⊗ x dv

〉

= lim
T→∞

1

T

[∫

P
ρẋ⊗ x dv

∣
∣
∣
t=t0+T

−
∫

P
ρẋ⊗ x dv

∣
∣
∣
t=t0

]

= 0 . (7.4)

The preceding time-average vanishes due to the assumed boundedness of the domain integral
∫

P ρẋ⊗ x dv at all times. In the case of a rigid translation, it is easy to show that the quantity

inside the square bracket in (7.4) is not bounded, therefore the time average of d
dt

∫

P ρẋ⊗x dv

does not necessarily vanish.

Using (7.4), the time-averaged counterpart of the mean-stress formula (7.2) takes the

form

〈(volP)T̄〉 =
〈∫

∂P
t⊗ x da

〉

+
〈∫

P
ρb⊗ x dv

〉

+
〈∫

P
ρẋ⊗ ẋ dv

〉

. (7.5)

Turn attention now to a system of N particles whose motion is governed by Newton’s

Second Law, namely

mαẍα = fα , α = 1, 2, . . . , N , (7.6)

where mα and xα are the mass and the current position of particle α, respectively, while fα

is the total force acting on particle α. Taking the tensor product of the preceding equation

with xα, it is easy to deduce the relation

mα d

dt
(ẋα ⊗ xα)−mαẋα ⊗ ẋα = fα ⊗ xα . (7.7)

Moreover, taking time averages of (7.7) for the totality of the particles and assuming bound-

edness of the term
∑N

α=1 m
αẋα ⊗ xα, it is concluded that

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

=
〈 N∑

α=1

fα ⊗ xα
〉

. (7.8)

Recognizing now that the total force fα acting on a given particle is the sum of an internal

part f int,α (due to interaction between particles) and an external part f ext,α (due to all sources

outside the particle system), the preceding equation may be rewritten as

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

=
〈 N∑

α=1

f int,α ⊗ xα
〉

+
〈 N∑

α=1

f ext,α ⊗ xα
〉

(7.9)

or, upon rearranging terms,

−
〈 N∑

α=1

f int,α ⊗ xα
〉

=
〈 N∑

α=1

f ext,α ⊗ xα
〉

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

. (7.10)
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Comparing (7.5) to (7.10) and ignoring the body forces in the continuum problem, it

can be argued that there is a one-to-one correspondence between the three terms in each

statement. Therefore, one may argue that if the region P corresponds to this set of particles,

the mean stress in this region satisfies

〈(volP)T̄〉 .
= −

〈 N∑

α=1

f int,α ⊗ xα
〉

, (7.11)

which, with the aid of (7.10), leads to an estimate of the time average of the mean Cauchy

stress in terms of the underlying particle system dynamics as

〈(volP)T̄〉 .
=
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

+
〈 N∑

α=1

f ext,α ⊗ xα
〉

. (7.12)

Equation (7.12) is a statement of the virial theorem. It is interesting to note that (7.12)

suggests that the time-averaged mean stress may be expressed as the sum of a kinetic part

due to particle velocities and a part due to the external forces.

7.2 Exercises

7-1. Consider a continuum body which occupies the region R, and in which any material particle
i is subject to a force fi due to its interaction with any other material particle j. Also, let
the force fi be derived from a potential V = V̂ (xi,xj) as

fi =
∂V

∂xi
, (†)

where xi and xj are the position vectors of particles i and j relative to a fixed point O.

(a) Invoke invariance under superposed rigid motions to conclude that the potential V
depends only on the relative position of the two particles, namely that V = V̄ (r),
where r = xi − xj .

(b) Argue a further reduction in the constitutive dependence of the potential, in the form
V = Ṽ (r), where r =

√
r · r.

(c) Use the reduced form of the potential obtained in part (b) and the constitutive relation
(†) to conclude that fi = −fj , where fj is the force acting on particle j due to its
interaction with particle i.

(d) Derive an expression for the total force f(x) at some material point with position vector
x due to its interaction with the rest of the particles in the body.
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(e) Assume that the mutual interaction can be modeled by a Lennard-Jones potential,
which is defined as

Ṽ (r) = c

[(rm
r

)12
− 2

(rm
r

)6
]

,

where c and rm are material parameters. Use this potential and equation (†) to derive
an expression for the force fi. What is the physical interpretation of the parameter rm?
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A Cylindrical polar coordinate system

Let the orthonormal basis vectors of the cylindrical polar coordinate system be {er, eθ, ez},
and note, with reference to Figure A.1, that they are related to the fixed Cartesian orthonor-

mal basis {e1, e2, e3} according to

er = e1 cos θ + e2 sin θ ,

eθ = − e1 sin θ + e2 cos θ , (A.1)

ez = e3 .

Here, θ is the angle formed between the vectors e1 and er. Conversely, one may write

e1

e2

e3, ez

er

eθ

θ

Figure A.1. Unit vectors in the Cartesian and cylindrical polar coordinate systems

e1 = er cos θ − eθ sin θ ,

e2 = er sin θ + eθ cos θ , (A.2)

e3 = ez .

Further, since for any vector x one may write

x1

x2

x3

x e1

e2

e3, ez

er

Figure A.2. Unit vectors in the Cartesian and cylindrical polar coordinate systems

x = xiei = rer + zez , (A.3)
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as in Figure A.2, one may easily conclude from (A.1) that

x1 = r cos θ , x2 = r sin θ , x3 = z . (A.4)

Conversely, using (A.2) or (A.4) is follows that

r =
√

x2
1 + x2

2 , θ = arctan
x2

x1

, z = x3 (A.5)

It is also easy to show, with the aid of (A.1), that

der
dθ

= eθ ,
deθ
dθ

= −er , (A.6)

hence, recalling (A.3)2,

dx = drer + rdθeθ + dzez . (A.7)

It follows from the preceding equation that the infinitesimal area element in the (er, eθ)-plane

is expressed as

dA = drer × rdθeθ = rdrdθez . (A.8)

The most efficient way to derive expressions for the gradients of scalar and vector func-

tions in the cylindrical polar coordinate system is to use the coordinate-free definitions (2.76)

and (2.80). To this end, start from (2.76) and observe that the differential of the scalar func-

tion φ(x) is defined in coordinate-free manner as

dφ = gradφ · dx . (A.9)

When using polar coordinates, it follows that

dφ = gradφ · (drer + rdθeθ + dzez)

=
∂φ

∂r
dr +

∂φ

∂θ
dθ +

∂φ

∂z
dz ,

(A.10)

where use is made of (A.7). Equating the right-hand sides of (A.10)1,2 yields

gradφ · er =
∂φ

∂r
, r gradφ · eθ =

∂φ

∂θ
, gradφ · ez =

∂φ

∂z
, (A.11)

which, in turn, implies that

gradφ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez . (A.12)
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Following a completely analogous procedure, one may use (2.80) to define the differential

of the vector function v(x) as

dv = gradv dx , (A.13)

where, as usual,

v = vrer + vθeθ + vzez . (A.14)

Taking into account (A.6), (A.7), and (A.14), one finds that

dv = gradv (drer + rdθeθ + dzez)

=
∂v

∂r
dr +

∂v

∂θ
dθ +

∂v

∂z
dz

=
∂vr
∂r

drer +
∂vθ
∂r

dreθ +
∂vz
∂r

drez

+

(
∂vr
∂θ

dθer + vrdθeθ

)

+

(
∂vθ
∂θ

dθeθ − vθdθer

)

+
∂vz
∂θ

dθez

+
∂vr
∂z

dzer +
∂vθ
∂z

dzeθ +
∂vz
∂z

dzez .

(A.15)

Equating the right-hand sides of (A.15)1,3 implies that

(gradv)er =
∂vr
∂r

er +
∂vθ
∂r

eθ +
∂vz
∂r

ez ,

(gradv)eθ =
1

r

(
∂vr
∂θ

− vθ

)

er +
1

r

(
∂vθ
∂θ

+ vrdθ

)

eθ +
1

r

∂vz
∂θ

ez ,

(gradv)ez =
∂vr
∂z

er +
∂vθ
∂z

eθ +
∂vz
∂z

ez ,

(A.16)

from where it is readily concluded that

gradv =
∂vr
∂r

er ⊗ er +
∂vθ
∂r

eθ ⊗ er +
∂vz
∂r

ez ⊗ er

+
1

r

(
∂vr
∂θ

− vθ

)

er ⊗ eθ +
1

r

(
∂vθ
∂θ

+ vr

)

eθ ⊗ eθ +
1

r

∂vz
∂θ

ez ⊗ eθ

+
∂vr
∂z

er ⊗ ez +
∂vθ
∂z

eθ ⊗ ez +
∂vz
∂z

ez ⊗ ez . (A.17)

The divergence of the vector function v(x) is obtained from (A.17) by appealing to the

definition (2.85), and is given by

div v =
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)

+
∂vz
∂z

. (A.18)
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Lastly, given a symmetric tensor function T(x), expressed using cylindrical polar coordinates

as

T = Trrer ⊗ er + Trθ(er ⊗ eθ + eθ ⊗ er) + Trz(er ⊗ ez + ez ⊗ er)+

Tθθeθ ⊗ eθ + Tθz(eθ ⊗ ez + ez ⊗ eθ) + Tzzez ⊗ ez , (A.19)

one may find that its divergence is given by

divT =

(
∂Trr

∂r
+

Trr − Tθθ

r
+

1

r

∂Trθ

∂θ
+

∂Trz

∂z

)

er+

(
∂Trθ

∂r
+

2Trθ

r
+

1

r

∂Tθθ

∂θ
+

∂Tθz

∂z

)

eθ+

(
∂Trz

∂r
+

Trz

r
+

1

r

∂Tθz

∂θ
+

∂Tzz

∂z

)

ez . (A.20)

Indeed, take a constant vector c, such that

c = ciei = crer + cθeθ + czez , (A.21)

where, upon recalling (A.2),

cr = c1 cos θ + c2 sin θ , cθ = −c1 sin θ + c2 cos θ , cz = c3 , (A.22)

hence

∂cr
∂θ

= −c1 sin θ + c2 cos θ = cθ ,
∂cθ
∂θ

= −c1 cos θ − c2 sin θ = −cr . (A.23)

Given the symmetry of T, one may write in cylindrical polar coordinates

Tc = Trrcrer + Trθcreθ + Trzcrez

+ Trθcθer + Tθθcθeθ + Tθzcrez

+ Trzczer + Tθzczeθ + Tzzczez . (A.24)

It follows from (A.20) that

div (Tc) =
∂

∂r
(Trrcr + Trθcθ + Trzcz)

+
1

r

[
∂

∂θ
(Trθcr + Tθθcθ + Tθzcz) + Trrcr + Trθcθ + Trzcz

]

+
∂

∂z
(Trzcr + Tθzcθ + Tzzcz) , (A.25)

from which one may deduce (A.20) upon recalling the coordinate-free definition (2.88) and

using (A.23).
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acceleration, 38
apparent, 83
centrifugal, 83
Coriolis, 83
Euler, 83
translational, 83

acceleration gradient
spatial, 108

adiabatic process, 149
axial vector, 18

balance of energy, 142
mechanical, 139
thermal, 143

basis
right-hand, 12

body, 37
bulk modulus, 236

Cauchy tetrahedron, 125
Cauchy’s lemma, 125, 144
Cauchy’s stress theorem, 128, 134
Cauchy-Green deformation tensor

left, 56
right, 54

Cayley-Hamilton theorem, 23, 219
circulation, 30, 159
Clausius-Duhem inequality, 146, 229
closed-cycle, 215
closure, 11, 185
configuration, 38

current, 40
material, 43
reference, 38

conservation law, 123
constitutive law

explicit, 186
implicit, 186

constitutive laws
determinism, 187
dimensional consistency, 187
invariance under superposed rigid-body mo-

tions, 188
locality, 187
tensorial consistency, 187

cross product, 12
left, 33
right, 33

curl, 27

deformation
infinitesimal, 176
spatially homogeneous, 49, 54, 56

deformation gradient
deviatoric, 104
inverse, 52

deformation gradient tensor, 49
virtual rate of, 141

dilatation
pure, 50

displacement, 92, 175
displacement gradient tensor

referential, 92, 176
spatial, 93, 177

divergence
of tensor function, 27
of vector function, 26
referential, 135
spatial, 135

divergence theorem, 29
dot product, 9

elastic response function, 241
elasticity tensor, 231
elements, 4
entropy, 146
equilibrium equations, 123
Euclidean point space, 10
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Euler equations
compressible, 194

Euler’s laws, 122
Eulerian description, 40
extensive quantity, 115

fading memory, 242
first law of thermodynamics, see balance of energy
flow

Couette, 206
creeping, 200
Poiseuille, 208
Stokes, 200

unsteady, 200
uniform, 195

flud
viscid, see viscous

fluid
elastic, 192
ideal, 194

irrotational, 195
inviscid, 191
linear viscous, 199
Newtonian viscous, 199
non-Newtonian, 198
Reiner-Rivlin, 198
viscous, 197

force
body, 120
contact, 120

form-invariance, 150, 152
energy balance, 155
linear momentum balance, 153
mass balance, 153

Fourier’s law, 145, 149

Gâteaux differential, 174
generalized Hooke’s law, 221
gradient

scalar function, 24
vector function, 25

Green’s First Identity, 36
Green’s Second Identity, 36
Green-Naghdi-Rivlin theorem, 158
group, 217

orthogonal, 217
symmetry, 217

heat capacity, 145
heat conductivity, 145
heat flux, 142

heat flux vector, 144
referential, 145

heat supply, 142
Helmholtz free energy, 147
Helmholtz-Hodge decomposition, 201
Hill-Mandel condition, 253
homothermal process, 148
hydrostatic pressure, 132

identity tensor
referential, 52
spatial, 52
two-point, 52

index
dummy, 14
free, 14

inertia tensor, 161
internal energy, 142
invariant

principal, 35
invariants

principal, 20
inverse function theorem, 51
isentropic process, 149

Jacobian determinant, 52
Jaumann rate, 190

Kelvin’s theorem, 159
Kelvin-Voigt model, 244
Killing’s theorem, 76
kinetic energy, 138
Kirchhoff-Saint-Venant law, see also generalized

Hooke’s law
Kronecker delta symbol, 9

Lagrange’s criterion of materiality, 44
Lagrangian description, 39
Lagrangian strain

generalized, 104
Lamé constants, 235
Laplace’s equation, 36

Dirichlet Problem, 36
Levi-Civita symbol, see also permutation symbol
linear space, 6
linear subspace, 7
localization theorem, 113

mapping, 5
composition, 5
configuration, 38
domain, 5
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linear, 13
range, 5

mass, 115
mass continuity equation, 118
mass density, 115

referential, 116
material

incompressible, 194, 236
isotropic, 219
path-independent, 216
simple, 240

material description, 38
Maxwell model, 244
measure, 115
memory response function, 241
Mohr’s stress representation, 164
moment

body, 120
contact, 120

momentum
angular, 120
linear, 119

motion, 37
circulation-preserving, 159
invertible, 52
irrotational, 77
isochoric, 60, 74, 194
rigid, 76
rigid-body, 45
steady, 45
steady at a point, 45
unsteady, 45
volume-preserving, 60

Nanson’s formula, 62
Navier’s equations of motion, 239, 254
Navier-Stokes equations

compressible, 199
neo-Hookean law, 252

compressible, 221
incompressible, 223

no-slip condition, 197
Noll’s rule, 218

objective, 87
objective rate, 190
objective stress rate

co-rotational, 169
convected, 169
Cotter-Rivlin, see also convected
Green-McInnis, 169

Jaumann, see also co-rotational
Oldroyd, 170
Truesdell, 169

octahedral stress
normal, 166
shear, 166

particle path, 45
pathline, 45
permutation symbol, 13
Piola identity, 161
Piola transform, 162
pitch drop, 185
placement, 39
point, 10
Poisson effect, 236
Poisson’s ratio, 235
polar decomposition

left, 64
right, 63

polar decomposition theorem, 62
polar factors, 62
polar moment of inertia, 238
pressure, 132
principal directions, 65
principle of angular momentum balance, 122
principle of balance of mass, see principle of mass

conservation
principle of linear momentum balance, 121
principle of mass conservation, 117
projection methods, 202
purely mechanical process, 185

Radon-Nikodym theorem, 115
rate of change

convective, 43
rate of heating, 142
rate-of deformation tensor

virtual, 141
rate-of-deformation tensor, 74

right, 168
referential description, 39
region

bounded, 29
smooth, 29

relaxation property, 242
representation theorem for isotropic real-valued

functions of a tensor variable, 220
representation theorem for isotropic tensor-valued

functions of a real variable, 192
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representation theorem for isotropic tensor-valued
functions of a tensor variable, 198

representation theorem for tensor-valued functions
of a tensor variable, 219

Reynolds transport theorem, 111
rigid rotation, 154, 156
rigid translation, 154, 155
rigid-body motion

superposed
inertial, 154

Rivlin’s cube, 225
Rodrigues’ formula, 71, 99
rotation tensor

infinitesimal, 180
rotor, see also curl

scalar
differential, 263

set, 4
Cartesian product, 5
closed, 11
complement, 4
difference, 4
empty, 4
intersection, 4
linearly independent, 8
open, 11
union, 4

shear
antiplane, 254
engineering, 184
pure, 50, 133
simple, 50

shifter, 52
Signorini’s theorem, 165
simple shear, 91
simply connected, 201
solid

non-linearly elastic, 212
Cauchy-elastic, 216
Green-elastic, 213
hyperelastic, 213

viscoelastic, 242
space

distance between points, 11
origin, 11

spatial description, 40
specific heat supply, see heat supply
specific internal energy, see internal energy
spectral representation theorem, 21
spin tensor, 74

stagnation point, 45
static continuation, 242
Stokes theorem, 30
Stokes’ first problem, 250
Stokes’ second problem, 210
strain energy, 212
strain energy function, 212
strain tensor

Almansi, see Eulerian
Eulerian, 59
Hencky, 104
infinitesimal, 180
Lagrangian, 58

streakline, 46
streamline, 46
stress

deviatoric, 222
stress power, 139
stress response function, 186
stress tensor

Biot, 168
Cauchy, 128
Eshelby, 251
first Piola-Kirchhoff , 134
Kirchhoff, 137
Mandel, 169
nominal, 137
second Piola-Kirchhoff, 137

stress vector, 120
stress-rate response function, 186
stretch, 53

logarithmic, 76
principal, 65
pure, 50

stretch tensor
left, 62
right, 62

subgroup, 217
subset, 4

proper, 4

temperature
absolute, 146
empirical, 145

temperature gradient
referential, 147
spatial, 147

tension
pure, 132

tensor, 13
addition, 19
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adjugate, 105
components, 15
contraction, 22
determinant, 20
fourth-order, 231
identity, 13
inner product, 22
inverse, 22
inverse-transpose, 24
invertible, 22
multiplication, 19
orthogonal, 23
improper, 23
proper, 23, 68

positive-definite, 19
referential
objective, 87

reflection, 72
rotation, 71
shifter, 214
skew-symmetric, 17
spatial
objective, 87

symmetric, 17
trace, 20
transpose, 17
two-point, 51
objective, 88

zero, 13
tensor function

isotropic, 192, 198
tensor product, 13
tensors

co-axial, 22, 66, 168
mutually orthogonal, 22

thermomechanical process, 185
time average, 257
time derivative

material, 43
particle, see also material
spatial, 43
substantial, see also material
total, see also material

total internal energy, 142
traction

normal, 131

shearing, 131
traction vector, 120
triple product

scalar, 12, 59
vector, 32

vector
Cartesian component, 10
magnitude, 9
orthogonal, 9
orthonormal, 9
spatial
objective, 87

vector field
divergence-free, see solenoidal
solenoidal, 201

vector space, 6
basis, 8
Euclidean, 9
finite dimensional, 8
infinite-dimensional, 8

velocity, 38
angular, 83
apparent, 83
translational, 83
virtual, 140

velocity gradient tensor
spatial, 73

virtual power theorem, 141
viscosity coefficients, 199
vortex line, 78
vorticity tensor, 74
vorticity vector, 77

wave
frequency, 239
longitudinal, 238
period, 239
transverse, 239

wave number, 239
wave speed

longitudinal, 239
transverse, 240

wavelenght, 239
work-conjugate, 140

Young’s modulus, 235
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