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Chapter 1

Review of Continuum Mechanics

1.1 Kinematics of Deformation

Define a body £ as a collection of material points and identify a typical material point

with P, as in Figure 1.1.

Figure 1.1. A body % and its subset .7 .

At some time ¢, define the configuration of # as the region in the three-dimensional Eu-
clidean point space £2 occupied by 4, and denote this configuration R and its boundary OR.
The material point P in the configuration of #Z at time t is identified with a vector x in
three-dimensional Euclidean vector space E? drawn from any fixed origin o, see Figure 1.2.

Let x be resolved with respect to a fixed orthonormal basis {e;} as
X = 2€ ; Xy = X-€;, (1]_)

where “” denotes dot-product between two vectors and the Einsteinian summation conven-
tion in enforced on repeated indices. The configuration of Z at time ¢ will be referred to as

the current or present configuration.



2 Review of Continuum Mechanics

@) Ro R
{Ea} 0
{ei}

Figure 1.2. Reference and current configurations of a body 9 at times tq and t, respectively.

Let the same body % occupy at some other time t = ¢ (often set, without loss of
generality, to ty = 0) the region R in £ with boundary 9Ry. The material point P at time
to is identified with another vector X in E® drawn, in general, from another fixed origin O,

see Figure 1.2. Let X be now resolved with respect to a fixed orthonormal basis {E4} as
X = XAEA ) XA = XEA (12)

The configuration of & at time t, will be referred to as the reference configuration.
The motion x : £3 x R — &3 is a mapping of points X in the reference configuration to

points in the current configuration x at given time ¢, that is,
x = x(X,t) 5 oz o= xi(Xa,t) . (1.3)

The wvelocity and acceleration fields are respectively defined at time ¢ as

. Ox (X, L Ov(Xat
v = x(X,t) = —X(ﬁt ) v = X = gxil2at) (875A ) (1.4)
and 9x (X, 1) 9xi (Xa,t)
. X ) . Xi )
a = XXt = =55 5 4= = —at2A . (1.5)

where () denotes the material time derivative, that is, the time derivative of a quantity for
a fixed material point.

The fundamental measure of relative deformation is the deformation gradient tensor F
which may be viewed as a linear mapping of an infinitesimal material line element dX of the
reference configuration to an infinitesimal line element dx in the current configuration, that
is,

dx = FdX 3 dl’z = iAdXA7 (16)

ME280B May 7, 2019



Kinematics of Deformation 3

Ro R

Figure 1.3. Mapping of an infinitesimal material line element dX from the reference to the

current configuration.

see Figure 1.3. Assuming that there is a motion x, where
x (X)) = x=x(X,1), (1.7)

one readily concludes from (1.6) that

Ix
F = =% . 1.8
0X (18)
The deformation gradient is a two-point tensor, in the sense that
F = Fiie;, ®E, , (19)

where “®” denotes tensor product of two vectors. As seen from (1.8), the deformation
gradient F has one “leg” (the first) in the current configuration and the other “leg” in the
reference configuration.

An infinitesimal material volume element dV in the reference configuration is likewise

mapped to an infinitesimal volume element dv in the current configuration, such that
dv = JdV (1.10)

where J = det F is the Jacobian of the motion. Appealing to the inverse function theorem of
calculus, it can be established that a continuously differentiable (in X) motion x is invertible

at a given time t if, and only if,
ox
detF = det === 0 1.11
e etax # 0, (1.11)

for all X € Ry. Upon assuming, on physical grounds, that the sign of a given material
volume should be always preserved, it can be concluded from (1.10) that invertibility of x

necessitates that J > 0.

May 7, 2019 MEZ280B



4 Review of Continuum Mechanics

An infinitesimal material area element dA in the reference configuration is mapped to
an infinitesimal area element da in the current configuration according to Nanson’s formula,
which states that

nda = JF'NdA, (1.12)

where N (resp. n) is a unit vector normal to the surface dA (resp. da), see Figure 1.4.

Ro

Figure 1.4. Mapping of an infinitesimal material surface element dA to its image da in the

current configuration.

Other useful measures of deformation are the right and left Cauchy-Green deformation

tensors C and B defined, respectively, as
C = F'F ; Cup = FiuFjp (1.13)

and

B = FF” Bij = FiaFja . (1.14)

; ij

It is clear from the preceding component representations that C is a referential tensor,
while B is a spatial tensor. Both tensors are symmetric, which means that their components
form can be represented in the form of symmetric matrices.

Let M and m be unit vectors in the direction of dX and dx, respectively, such that

dX = MdS , dx = mds, (1.15)
and define the ratio p
S

P 1.16

e (1.16)

as the stretch of the material line element dX. It can be easily established with the aid
of (1.8), (1.15), and (1.16) that
Am = FM (1.17)

ME280B May 7, 2019



Kinematics of Deformation 5

and, upon also using (1.13), that
)\2 = M-CM ; /\2 = MACABMB . (118)

Likewise, (1.17) can be alternatively expressed as

1
XM = F'm, (1.19)
hence, with the aid of (1.14), it follows that
1 -1 1 —1

Two important measures of strain can be obtained by resolving the difference ds? — dS?

as

ds® —dS? = dx-dx —dX-dX
= (FdX) - (FdX) — dX - dX
= dX (CdX) —dX-dX = dX-(C-1)dX
= dX - 2EdX (1.21)
or, alternatively,
ds® — dS? = dx-dx —dX -dX
= dx-dx — (Ffldx) . (Ffldx)
= dx-dx —dx-B ldx = dx- (i—B_l)dx
= dx-2edx , (1.22)

where I and i are the referential and spatial identity tensors, respectively. These measures

are the (relative) Lagrangian strain tensor E, given with the aid of (1.21) by

1 1
E = S(C-1) ; Eap = 5(Cap—dan) . (1.23)
and the (relative) Eulerian (or Almansi) strain tensor e, defined from (1.22) as
1, B-1) . 1 5. gl Lo
e = 3B § o= -5 12

The polar decomposition theorem states that F, being non-singular by virtue of J =

det F > 0, can be uniquely resolved into

F = RU = VR ; Fiy=RigUps= ViR . (1.25)

May 7, 2019 MEZ280B



6 Review of Continuum Mechanics

Clearly, R is a two-point tensor, U is a referential tensor, and V is a spatial tensor.
More specifically, R is a proper-orthogonal (or indexrotation—seealsotensor!proper orthog-
onalrotation) tensor, that is, one which satisfies RTR = I, RRT =i, and detR = +1. In
addition, U and V are symmetric positive-definite tensors referred to as the right and left
stretch tensors, respectively. In light of these definitions, equations (1.25); o are correspond-
ingly referred to as the right and left polar decompositions of F.

Starting from (1.17) it can be seen that

dx = R (UdX) (1.26)

which implies that dX is first stretched and rotated by U, and is subsequently further rotated
by R, see Figure 1.5. A corresponding interpretation may be readily formulated for the left

dX dX’ ¢ dx

Figure 1.5. Interpretation of the right polar decomposition.

polar decomposition.
Along its principal directions, U effects stretch without any rotation, which implies that,

if dX lies along such a principal direction, then
UdX = \dX (1.27)

or, upon recalling (1.15),
UM = \M . (1.28)

With reference to the principal stretches A;, I = 1,2,3 and the associated principal direc-
tions My, I = 1,2, 3! of the preceding linear eigenvalue problem, one may use the spectral

representation theorem to write

3
U =)> MM aM, (1.29)

I=1

!The set of eigenvectors {M;} may be taken to be orthonormal without loss of generality.

ME280B May 7, 2019



Kinematics of Deformation 7
from which it follows that
3
F = RU = ) ) (RM;) @M, (1.30)
=1
and also, given the definition of C and the orthogonality of R, that
3
C = F'F = RU)"(RU) = U = > MM;@M;. (1.31)
I=1
Generalized referential measures of deformation can be introduced in the form
3
C" = > A"M;e@M;  m#0 (1.32)
=1
3
logC = Z log XaM; @ M; (Hencky strain) (1.33)
I=1
with associated measures of generalized referential strain
L(Cm2-1) ifm+#0
EM = (™ ( ) # : (1.34)
%lnC ifm=20
Note that m = 2 in (1.34) recovers the Lagrangian strain tensor.
It is readily concluded from (1.25) and (1.29) that
3
V = > A\ (RM;) @ (RM;) (1.35)
I=1
and also, given the definition of B and the orthogonality of R, that
3
B = FF’ = (VR)(VR)" = V? = ) ) (RM)) ® (RM}) . (1.36)

I=1

There exist several ways to extract the polar factors of F. In particular, focusing attention

to the right polar decomposition, one may:

(a) Extract the stretch U directly from F in closed form?, and subsequently obtain R as

R = FU .

(1.37)

2A. Hoger and D.E. Carlson, “Determination of the stretch and rotation in the polar decomposition of

the deformation gradient”, Q. Appl. Math., 42:113-117, (1984).

May 7, 2019
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(b) Extract the rotation R directly from F in closed form?, and subsequently obtain U as

U = R'F. (1.38)

(c) Use a numerical method to solve the matrix equation
[Cap] = [FiaFig] = [UacUcs] (1.39)

for the components [Uap] of U to within the required tolerance, then evaluate R as
in (a). A computationally efficient algorithm for solving this matrix equation employs

the Newton-Raphson method, according to which
) 1 . .
Ut — 5 (U +cudty | (1.40)

with initial guess
U0 =1 (or mI, m >0) . (1.41)

It can be shown that with this choice of U® all U® are positive-definite and also

U® converges to U at a quadratic rate®

(d) Solve the linear eigenvalue problem (1.31) for the eigenpairs {(A?, M)}, form U us-
ing (1.29), and then calculate R as R = FU™.

Lastly, attention is focused on mixed space-time derivatives of the motion, which give

rise to measures of deformation rate. Invoking the chain rule, write

_dox  0dx  Ov  Oviox
F=uX ~oxa ~ ox ~ oxox ~ F (1.42)

In (1.42), L is the spatial velocity gradient, defined as

ov ov;
L= — . L. = 1.4
ox ' Y O (1.43)

The tensor L may be uniquely decomposed into a symmetric tensor D, termed the rate-
of-deformation tensor, and a skew-symmetric tensor W, termed the vorticity or indexspin

tensor—seealsovorticity tensorspin tensor, such that

L=D+W. (1.44)

3P. Papadopoulos and J. Lu, “On the direct determination of the rotation tensor from the deformation

gradient”, Math. Mech. Solids., 2:17-26, (1997).
4N.J. Higham, “Newton’s method for the matrix square root”, Math. Comp., 46:537-549, (1986).

ME280B May 7, 2019
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Balance Laws 9

The physical meaning of D can be established by observing that (1.17), (1.42), and (1.44)
imply that

In\ = % = m-Dm. (1.45)

Regarding W, first note that owing to its skew-symmetry, it can be put into a one-to-one

correspondence with a vector w of £, such that for any vector z in E3,
Wz = wxz. (1.46)

The vector w is called the axial vector of W. Then, considering a unit vector m along a
principal direction of D, it can be established with the aid of (1.17), (1.42), (1.44), and (1.45)
that

m=Wm = wxm. (1.47)

This shows that the axial vector of W can be thought of as the angular velocity of a line
element positioned along a principal direction of D.
Using (1.42), as well as the earlier definitions of the deformation and strain tensors, it

can be readily concluded that

C =FTF = 2F'DF ; Cup = 2F.D;Fjp , (1.48)
E = F'DF ; FEap = FuDyFjp, (1.49)
and also _
B =FFT = LB+BL" ; By = LyBy + BiLj (1.50)
é = %(BlL+LTBl) 6y = %(BmlijJrLkinjl) : (1.51)

It is also easy to show that

d
d—i = Jdivv = JtrL. (1.52)

1.2 Balance Laws

The underlying physical principal of continuum mechanics are the conservation of mass,
the balance of linear and angular momentum, and the balance of energy. There are briefly

reviewed in this section.

May 7, 2019 MEZ280B



10 Review of Continuum Mechanics

Preliminary to the introduction of the balance laws, three important results from calculus
and real analysis are stated without proof. The first is the divergence theorem, according
to which, given a continuously differentiable real-valued function ¢ = qg(x, ):PxR—=R
defined at time ¢ on some subset P of £ with boundary P, then

/gradgbdv = ¢nda , (1.53)
P oP
where grad ¢ is the gradient of the function ¢, defined as
0¢
do = —e; . 1.54
gradg = - e (1.54)

Versions of this theorem may be easily deduced from the above for vector and tensor func-
tions. The second result is known as the Reynolds’ transport theorem, and states that if ¢ is

differentiable in both of its variables, then

/¢du = / (¢ + ¢ divv) dv (1.55)

where
.09 5¢
= —+—=-Vv. 1.56
? = T ox (1.56)
Using 1.56 and the divergence theorem, it is easy to show that (1.55) may be recast as
/ ¢ dv / —¢ + dlv(gbv)] dv / dv + ¢v-nda . (1.57)
ot ot op

Lastly, the localization theorem states that if ¢ is continuous in x and

/¢dv =0, (1.58)
P

for all subsets P of R at a given time ¢, then ¢ = 0 everywhere in R at time ¢.

Extensive use of these three important results will be made henceforth.

1.2.1 Conservation of Mass

Start by axiomatically admitting the existence of a measure of mass m(.) for every subset
< of the body 4. Upon assuming certain regularity conditions for this measure, it can be

established that there exists a mass density p(x,t) such that

/ydm = /dev (1.59)

ME280B May 7, 2019




Balance Laws 11

for the region P C R that occupies the part . at time t¢.

Likewise, there exists a mass density function py(X) at time t¢, such that

/dm = / po AV (1.60)
4 Po

for the region Py C Ry that occupies the part . at time ty5. The preceding two statements
reflect the conservation of mass between the configurations occupied by the body at times ¢

and to. Equating the right-hand sides of these statements and recalling (1.10) leads to the

/,00 v = /pdv = / pJ dV (1.61)
Po P Po

/ (po—pJ)dV = 0. (1.62)

Invoking the localization theorem, this implies that

integral statement

or

po = pJ . (1.63)

This is a local statement of mass conservation between the two configurations.
Alternatively, conservation of mass may be stated in integral form as

d
— [ pdv = 0. 1.64
g |, P (1.64)

Applying Reynolds’ transport theorem in the form of (1.55) implies that

/(p+pdivv) dv = 0. (1.65)
P

Appealing to the localization theorem, this leads to a local statement of mass conservation
in the form
p+pdivy = 0. (1.66)

1.2.2 Balance of Linear Momentum

The linear momentum of the material which occupies the region P at time t is fp pv dv.
Admit the existence of two types of external forces, both of which quantify the interaction

of P with its surrounding environment. Specifically, consider: (a) body forces per unit mass

b = b(X, t) acting on the material particles the region . which occupies P at time ¢ and (b)

contact forces per unit area t = t(x,t;n) acting on the boundary surface 0P and depending

May 7, 2019 MEZ280B



12 Review of Continuum Mechanics

on the orientation n of the surface. The integral statement of linear momentum balance for

the continuum occupying P at time t takes the form

d
— [ pvdv = /pbdv+/ tda . (1.67)
dt Jp P oP

Using linear momentum balance in the preceding primitive form it can be shown that
t(x,t;n) = —t(x,t;—n) . (1.68)

This result is known as Cauchy’s lemma, and asserts that contact forces acting at a point x

on opposite sides of the same surface are equal and opposite.

Applying balance of linear momentum to a right-angled tetrahedral region (the Cauchy
tetrahedron) in conjunction with Cauchy’s lemma, it can be shown that there exists a ten-

sor T, appropriately termed the Cauchy stress tensor, such that

Upon using mass conservation, (1.68), and the divergence theorem, it can be concluded

from the linear momentum balance statement (1.67) that

d
— [ pvdv = /padv
P

dt Jp
= /pbdv+/Tnda
P P

= / pb dv + / divT dv . (1.70)

P P

Upon invoking the localization theorem, this results in
divT +pb = pa ; Tj;+pb = pa; . (1.71)

The preceding statement of linear momentum balance can be also resolved on the geometry

of the reference configuration, where, upon again using mass conservation, Cauchy’s lemma

ME280B May 7, 2019



Balance Laws 13

and the divergence theorem, in conjunction with Nanson’s formula (1.12), one finds that

d d
il dv = = dv
dt J,7V T Y

pbdv + / Tnda
P P

I
T

pob dV + / TJF "N dA

0 0Po

pob dV + / PN dA

[
S

0 dPo
= pode+/ DivPdV , (1.72)
0 dPo
where P, defined as
P = JTF " ; Py = JI;F,;}, (1.73)

is the first Piola-Kirchhoff stress temnsor. Upon again invoking the localization theorem, it
follows that the local statement of linear momentum balance may be expressed in referential
form as

DivP + pob = poa ; FPiaa+pobi = poa; . (1.74)

Recalling (1.76), one may define the traction p resolved on the geometry of the reference
configuration as

where the (differential) force df across a surface is given by

df = tda = pdA . (1.76)

1.2.3 Balance of Angular Momentum

The angular momentum of the material which occupies the region P at time ¢ is fp X X pv dv,
see Figure 1.6.
The integral statement of angular momentum balance for the continuum occupying P at
time ¢ is J
— xxpvdv:/xprdv—i—/ X X tda . (1.77)
dt Jp P op
Upon invoking mass conservation and linear momentum balance, as well as using the diver-

gence and localization theorems, it follows from the above that

T = T' ;o Ty = Ty, (1.78)
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Figure 1.6. Angular momentum of an infinitesimal volume element.

namely angular momentum balance requires that T be symmetric. An equivalent local
statement of angular momentum balance may be formulated in terms of the first Piola-
Kirchhoff stress. Indeed, upon using (1.73), this takes the form

PF" = FP" ;| PiuFj4 = FiaPja . (1.79)

1.2.4 Balance of Energy

First, consider the mechanical energy balance theorem, which is a direct consequence of the

preceding three balance laws. According to it,

d 1
— —pv-vdv+/T-de:/pb-vdv+/ t-vda, (1.80)
dt Jp 2 P P oP
where .
H(P) = / —pv-vdv (1.81)
p2
is the kinetic energy of the continuum in P,
S(P) = / T-Ddo (1.82)
P
is the stress power, and
HZ(P) = /pb-vdv—i—/ t-vda (1.83)
P oP

is the rate at which the external forces do work in P. In words, the theorem asserts that the
rate of change of the kinetic energy and the stress power of the material in P are equal to
the rate at which work is done by the external forces acting on R.

Note that the stress power can be expressed as

/T~de = / P.-FdV = / S-EdV , (1.84)
P Po Po
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where S is the second Piola-Kirchhoff stress tensor. Given (1.42) and (1.73), it can be easily
concluded from (1.84) that

S = F'P = JF'TF " ; Sup = Fy'Pp = JF,T;;Fg} (1.85)
or
T - Llppr —lFSFT cono= ipar, = Lp SapF; (1.86)
7J 7J ) 'L*JzAzA*JlAABjB' .

It is immediately concluded from the above that S is a symmetric tensor.

Next, admit the existence of a scalar heat supply r = r(x,t) per unit mass, which quan-
tifies the rate at which heat is supplied (or absorbed) by the body. Also, introduce a scalar
heat flur h = h(x,t;n) per unit area across a surface 0P with outward unit normal n. In
addition, assume that there exists a scalar function ¢ = e(x,t) per unit mass, called the
internal energy which quantifies all forms of energy stored in the body other than kinetic
energy.

Now the principle of energy balance is postulated in the form

d 1
— {—pv-v+p51 dv = /pb-vd’u+/ t-vda—l—/prdv—/ hda . (1.87)
dt Jp |2 P oP P op

This is a statement of the first law of thermodynamics. Using a standard procedure akin to
the one used to deduce (1.68), it can be established that

h(x,t;n) = —h(x,t;—n) . (1.88)

Likewise, using (1.88), the Cauchy tetrahedron argument can be repeated for the balance of

energy to show that there exists a heat flux vector q, such that
h =q-n. (1.89)

Now, using the divergence and localization theorems, along with the previously deduced
local forms of mass, linear momentum, and angular momentum balance, a local statement

of energy balance can be obtained from (1.87) as
pé = pr—divq+T-D ; p¢ = pr—q; +1;;D;; . (1.90)

An equivalent referential local statement of energy balance may be readily deduced from (1.90)
as

po€ = por —Divqo +P-F ; poé = por — qoaa+ PiaFia (1.91)
where qp = JFlq.
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16 1.3. INVARIANCE UNDER SUPERPOSED RIGID-BODY MOTIONS

1.3 Invariance under Superposed Rigid-body Motions

Consider two motions x and x* which map points of the same reference configuration to
points of two current configuration which at time ¢ differ from each other by a superposed

rigid motion X, as in Figure 1.7.

Figure 1.7. Configurations associated with motions x and x™* differing by a superposed rigid-
body motion x*.

It can be shown using a standard procedure that
xt = xT(x,t) = Q(t)x + c(t) (1.92)

where Q is a proper orthogonal tensor and c a vector, both functions of time ¢ only.

It follows easily from chain rule that

ox*  ox* ox

F™ = X - o X QF . (1.93)
This can be used to establish the relations
R"* =QR , U"=U , VF = QvQ’ (1.94)
and also
Cr=C , EfFE =E , B" = QBQ" , e = QeQ’. (1.95)

In addition, it is easy to show that

nt = Qn , m" = Qm , dst =ds , dat = da , dv" = dv. (1.96)
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Also, taking the material time derivative of (1.92), it follows that
vi = xt = Qx+ Qv +¢
— QQx+ Qv ¢ (QQT:ﬂ)
= Qx"T—c)+Qv+ec = wx (x"—c)+Qv+e¢ (1.97)
Using the above, it can be readily establish that
L" = QLQT+Q , DT = QDQT ., W' = QWQ'+ Q. (1.98)

A physically plausible assumption is made about the transformation of the stress vector t

under a superposed rigid-body motion. Indeed, recalling that
t = Tn, (1.99)

namely that t is linear in n, assume that

tt = Qt (1.100)
which immediately implies that
T = QTQT . (1.101)
From the above, it follows easily that
P =QP , ST =8S. (1.102)

Invariance under superposed rigid-body motions is a physically motivated postulate in
continuum mechanics, according to which the stress response remains unaltered when a rigid
motion is superposed onto the actual motion of interest. Following this postulate, assume
that

~

T — T(F,F,-~-,GradF,---,p,---) (1.103)
then invariance under superposed rigid-body motion implies
T — T(F+F+ GradF™, .- ,p+,--~> , (1.104)
namely T remains unaltered by the superposed rigid motion.
Regarding invariance, it is also postulated that
rm=1r , e =¢ , q° = Qq. (1.105)

The last relation implies
ht = h. (1.106)
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18 1.4. CLOSURE OF THE THEORY

1.4 Closure of the Theory

It is instructive to summarize the governing equations of continuum mechanics in the context
of a thermomechanical theory. There are a total of 8 equations stemming from the balance

laws, that is,
1. 1 equation from balance of mass, see (1.63) or (1.66),
2. 3 equations from balance of linear momentum, see (1.71) or (1.74),
3. 3 equations from balance of angular momentum, see (1.78) or (1.79)
4. 1 equation from balance of energy, see (1.90) or (1.91).

The unknowns of the problem are the position x (or velocity v), the mass density p, the
stress T, the heat flux q, and the temperature 6, which is a total of 3+1+9+3+1=17.
Closure is provided in the theory by constitutive laws for the stress (6 unknowns) and

heat flux (3 unknowns).
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Chapter 2

Consistent Linearization

2.1 Sources of Non-linearity

The consistent linearization of the kinematic and kinetic variables, as well as of the balance
laws themselves is of importance in two ways. First, in deriving “linearized” theories con-
sistent with general non-linear theories of continuum mechanics. For instance, consistent
linearization may be used to derive the classical theory of linear elasticity from non-linear
elasticity or a theory of infinitesimal deformations superposed on pre-existing finite deforma-
tions (“small-on-large” theories). The latter has an important application spectral analysis
of non-linear systems at a given time.

A second application of consistent linearization, which is especially relevant to finite ele-
ment analysis, is in obtaining the solution to boundary- and initial- value problem of contin-
uum mechanics using iterative methods methods that rely on instantaneous approximation
of the non-linear system by a linear counterpart.

There are three distinct sources of non-linearity when solving problems in continuum

mechanics. Each of them is briefly discussed here.

2.1.1 Geometric non-linearity

The measures of deformation may be non-linear functions of x (or v) and its gradients. For
instance, consider the (relative) Lagrangian strain tensor E defined in (1.23), and recall that

its components E4p may be expressed in terms of the components x; of the position vector

EAB = 5(8XA%—5AB> . (21)

X as
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This is clearly a non-linear function of x; through its derivative with respect to the referential
position X. This form of non-linearity is referred to as geometric.

Geometric non-linearity can be present even when the strains are “infinitesimal” (that
is, when they can be accurately approximated as linear in x). This could be the case when

the rotations are large.

2.1.2 Material non-linearity

The constitutive equation of the stress or heat flux may be a non-linear function of its
arguments (which are themselves generally functions of the unknowns of the problem). This
form of non-linearity is referred to as material or physical.

Material non-linearity would exist in a general isotropic non-linear elastic solid, for which

the constitutive law is of the form
T = Oé()i + OélB + O[QB2 s (22)

where ag, aq, and as are functions of the scalar invariants of B. Likewise, material non-

linearity exists in a general Reiner-Rivlin fluid, for which
T = foi+ /D + BD?, (2.3)

where (1, (2, and 3 are functions of the scalar invariants of D.

2.1.3 Non-linearity in the balance laws

The equation of linear momentum balance can exhibit non-linearity due to the convective
term in the acceleration term. Indeed, recalling (1.71) and also taking into account that
v = V(x,t), it follows that
ov  ov

divT +pb = pv = — 4+ — -V 2.4
vT +p p p ( 5 T o ) (2.4)

The second term on the right-hand side of (2.4) is clearly non-linear in v.
Note that this form of non-linearity vanishes when linear momentum balance is written

in the referential form of (1.74), since, in this case v = v(X,t) and

. ov
DivP + pgb = pov = Pogy - (2.5)
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2.2 Gateaux and Fréchet Differentials

In this section, the Gateaux and Fréchet differentials are introduced in the context of a non-

linear operator F' mapping elements from a Banach space % to another Banach space 7,

as in Figure 2.1.! As a special case, one may % = ¥ = R", where R" is equipped with the

U

v

Figure 2.1. Non-linear mapping between Banach spaces

usual Euclidean norm.?

Let F : % C % — 7 be a non-linear mapping, where %4 is an open set, and take
r € U, v € U and w € R. The Gdteauzr differential DgF(x,v) of the operator F' at x in

the direction v is formally defined as

DgF(z,v) = lim Fle+wo) = Flz) :

w—0 w

Equivalently, the Gateaux differential may be defined as

d
DgF = |—F
oFla) = [TParan)]
since
F A —F
{iF(:r N wv)] _ [ lim (x +{w + Aw}v) (x+ wv)}
dw w0 Aw—0 Aw w=0
. {F(x%—wv—i—va) —F(x+wv)]

= lim

Aw—0 Aw 0
. Flz+Awv) - F(z)
R v - Paflen)

where continuity of F' is invoked for fixed x and v.

(2.6)

(2.8)

!The treatment in this section follows closely the presentation in M.M. Vainberg, Variational Methods
for the Study of Non-linear Operators(English translation from Russian), Hold-Day, San Francisco, 1964.

2Tt is easy to show that all finite-dimensional normed vector spaces are complete.

May 7, 2019

MEZ280B



22 Consistent Linearization

The Gateaux differential D F'(z,v) is not necessarily linear in v. However, Dg F(x,v) is

necessarily homogeneous in v, that is, for any o € R, a # 0,

F(z + awv) — F(x)

DgF(x,av) = lim

r+ awv) — F(z
= o lim = aDgF(z,v) .
aw—0 ow

It can be shown that if:
(a) DgF(z,v) exists in some open neighborhood U of x4 and is continuous in x at = xo,
(b) DgF(xg,v) is continuous in v at v = 0,
then the Gateaux differential Do F(xg,v) is actually linear in v and one may write
DgF(xg,v) = [DgF(x0)] (v), (2.10)

where the function DgF' () is called the Gateauz derivative of F at x = xy. The Gateaux

derivative is a linear operator on the Banach space %/, since for a given x = z( it maps
v € U to [DgF(x0)] (v) € V¥, that is,

DgF(xg) : v — [DgF(xo)] (v) . (2.11)

Example 2.2.1: Gateaux differential and derivative of a function in R
Let % = ¥ =R and define I according to F'(x) = z2. Then, use the definition (2.6) to write

F - F 2 _ .2
DgF(z,v) = lim (@ +wv) (z) = limw = lim [2xv—|—w02] = 2z2v .

w—0 w w—0 w w—0

Clearly, in this case the Gateaux differential is linear in v, therefore the Gateaux derivative Do F(z) is
a linear operator defined as

DgF(z) : veR — [DgF(z)](v) = 2zv, (2.12)

for any given = € R.

Note that the differential is not necessarily “infinitesimal” in magnitude. For a given z,
this depends on the magnitude of v.
Let F be again a non-linear mapping from the Banach space % to the Banach space 7.

Also, assume that at a given point x € %/,

F(z+v) = F(x)+ DpF(z,v) + O(z,v) , (2.13)
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for all v € %, where DpF(x,v) is a linear mapping in v € % and

oo l0G@ )l

= 0. 2.14
ollu—0 ||V (2.14)

Then, DpF(x,v) is called the Fréchet differential of F' at x and O(x,v) is the remainder
of F at x. The Fréchet derivative DpF(xo) at a given point = x, is defined as the linear
operator on %/ which takes any v € % and maps it to [DpF(xo)] (v) = DpF(z9,v), that is,

DpF(z) : we€ X — [DpF(x0)] (v) . (2.15)

In view of (2.13) and the properties of its constituent parts, one may define the linear part
of F'at x as
L[F;v]), = F(z)+ DpF(x,v) . (2.16)

A corollary of the above definition and the property of the remainder in (2.14) is that if
v # 0 is fixed and a > 0, then

i 1@ av)lly (2.17)
lavl—0  [low[e
implies
lim 19 @)l (2.18)
a—0 «

Note that DpF(z,v) is unique as defined in (2.13). To argue this, let, by contradiction,
F(x+v) = F(z)+ DpF(z,v) 4+ O(z,v) = F(z)+ DpF(z,v) 4+ O'(z,v) . (2.19)

Then, clearly,
DpF(x,v) — DpF(z,v) = O'(z,v) — O(z,v) . (2.20)

If one now replaces in the above v with av, a # 0, it follows that
a|[DpF(z,v) — DRF(x,v)] = O'(x,av) — O(z, av) (2.21)
or

O'(xz,av) — O(z, av)
a

DpF(x,v) — DRF(x,v) = (2.22)

Now, taking norms of both sides and then considering the limit o — 0 and recalling (2.18),
it follows that D% F(x,v) = DpF(z,v).
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Example 2.2.2: Fréchet differential and derivative of a function in R
Take, again, F(x) = 22 and write

F(z+v) = (x+v)? = 224200 +v? = F(z) + DpF(z,v) + O(z,v) ,

where, clearly,
DpF(xz,v) = 2zv,

which is linear in v, and also
O(z,v) = v*,

such that
)

o]0 |v]

Thus, the Fréchet differential of F' at x is given in this case by
DpF(xz,v) = 2zv
and the Fréchet derivative DpF(x) is

DpF(z) : veR — [DpF(z)](v) = 2zv.

From the definition of the Gateaux and Fréchet derivatives, it follows that if the Fréchet
derivative of F exists at a point x = x¢, then so does the Gateaux derivative and, furthermore,
the two derivatives coincide. Indeed, if the Fréchet derivative exists at xg, then, by definition,

one may write

F(xo+wv) = F(xo) + [DpF(z9)] (wv) + O(z,wo) , (2.23)
therefore,
I F(xo + wz) — Flxo) _ [D6F(x0)] (v) + lim M = [DeF(z)] (v),  (2.24)

in view of the property (2.18) of the remainder. The inverse of the above assertion does not
hold, namely the Gateaux derivative is weaker than the Fréchet derivative. However, it can
be shown that if DgF(z) exists and is continuous at x, then DpF'(x) exists and coincides
with DgF(z).

Note that continuity of an operator such as DgF(x) at a point x = z; is defined using
the natural norm induced with the mapping F', namely Do F(z) is continuous at x = xq if

for every € > 0 there is a 6 = d(x¢, ) such that

|DgF(x) — Do F(xo)|luvy < €, (2.25)
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whenever
lx — x|l < 6. (2.26)

Here, the natural norm is defined as

D¢ (x,
IDeF @)y = sup 12e 0

2.27
L ol (2:27)

where “sup” denotes least upper bound.

2.3 Consistent Linearization in Continuum Mechanics

In this section, linearization will be considered for quantities defined in the current configu-
ration R with respect to another configuration of a body associated with a region R.
To this end, start with the region Ry occupied by the body in the reference configuration,

and define a motion %, such that
X (X0 = % = XX = X(X) (2.28)

so that at time ¢ the body occupies the region R. In addition, define another motion x as
in (1.7), that is,

where the body ends up in the region R at time ¢, see Figure 2.2. Both motions are assumed

R

€

Figure 2.2. Configurations of the body for consistent linearization

invertible at any fixed ¢, that is both mappings %, and X, are invertible.
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One may now write

x = x(X) = x&'®) = x(X) (2.30)

where x? is a motion superposed on R, see, again, Figure 2.2. Symbolically, one may write

Xt = XfOYm (2.31)

(1))

where “o” denotes functional composition, hence
(X ox) (X) = X@X) = x® = x = x'(X) (2.32)
Next, define a vector field & = £ (X, t), such that
§ = x—x = x(X,) =x(X;1) ; & = &e;. (2.33)

The vector £ is called the tangent vector field on R.

The consistent linearization of kinematic and kinetic fields, as well as balance laws with re-
spect to the configuration associated with the region R is achieved by application of Gateaux
differentiation to each field (or balance law) at R in the direction of the tangent vector field &.
In what follows, all involved functions will be assumed as smooth as necessary to make their
Gateaux and Fréchet derivatives coincide. For this reason, the common notation DF (X, §)
and DF(X) will be employed henceforth for differentials and derivatives, respectively.

Note that the tangent vector field £ is not the usual displacement field u, given by
u=x-X = x(X,t)-X. (2.34)

However, in the special case
X(X.t) = X, (2.35)

for which R = Ry, the displacement and tangent vectors coincide. In this case, all lineariza-
tions are taken with respect to the reference configuration?
Start with the deformation gradient F and note that, by (1.8) and (2.7),

(2.36)

d X+ wf) _ 0&
dw  0X o 0X’

DF(x,£) = [%F(§+wg)]w:0 _ {

3See J. Casey, “On infinitesimal deformation measures”, J. Elast., 28:257-269, (1992), for derivations of

linearized kinematic quantities relative to the reference configuration.
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where € = £ (X, t). This implies that

— ox
L[F: €] 8_§:F’ F == (2.37)
that is, F is itself linear in &.
Observe that
€ = EX1) = £(x'(®).1) = &), (2.38)

therefore, by the chain rule, A
0¢ € 0% 0€ —
== - == _ OF 2.
0X 0x 0X ox (2:39)
and the linear part of F can be alternatively written as

LIF;¢,. = F+ % (2.40)

Consider next the linearization of the Lagrangian strain tensor E defined in (1.23). Here,

employing again the definition (2.7), it follows that

DE(x.€) — [ < {1(FT<x+w£> <x+w£>—1>}]

_ %{[%FT(iﬂLwﬁ)} w0F+FT [%F(XH@} wo}

R RN
= = [(a_x) F+F 8_X] : (2.41)

Alternatively, in view of (2.39),

w=0

Ulgr (96 5 w7%5| _ w7 (%65
DE(X,€) = (8_2) F+F %F = F (%> F, (2.42)
where p .
o0& 110§ 1913
(%) =5 8_§+ <%) ] . (2.43)
Therefore,
LE; €. = E+F (g§> (2.44)

and the linear part of E remains symmetric, as expected. Likewise, given (1.13) and (2.42),

it is immediately clear that

L[C:El. — C+2F (gf() | (2.45)
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Similarly, it is simple to conclude from (1.14) and (2.40) that

T
L[B;¢], = B+ g—iﬁ+ﬁ<g—§) : (2.46)

In the special case when the linearization is performed with respect to the reference

configuration, where

X=X, é=u , F =1, (2.47)
it is easy to see that, given (2.39),

06 _ 0tn _ 0§

X - T o (2.48)
Hence, once may conclude from (2.42) that
r(0EN . [0E\® AN
and
_ 1|og [eg)
LIEE]x = E+5 x T (6_X) = (&), (2.50)
where
e(§) = %(fA,BJrfB,A)EA@EB (2.51)

and since, in view of (2.47)3, E = 0. Given (2.47); and (2.50), one may also conclude that

£[E;£]X = E[E;u]x = e(u) = %( A,B+UB,A)EA®EB, (2.52)

which is the usual measure of strain at infinitesimal deformations. In addition, it follows
from (2.45) and (2.45) that

L[C:€]x = L[Cu]x = 2e(u). (2.53)

and

LIBigly = L[Bsuly = 2(u) . (2.54)
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Next, consider the linearization of J = det F with respect to the configuration R. Starting

once more with the definition (2.7),

DJ(X, &) = di detF(x—l—wf o
= -%det <F+w— ]
— :didet(F+wG)]w0 G = g_i
= % det {w { <_$) ]H
_ _dcij {w det F <—%) + (E) Ig1g — <—%) 14 +HIF—1G] }]
_ :% {det F[1 4wl 1 + 0Tl + 0Pl }} .

= (ietF Ig-14
where it is recalled that for any second-order tensor, say T,
det(T — M) = —\* + N\Ip — Allp + Iy .
In the above, I, Ilt, and IIlt are the principal invariants of T, defined as

IT = trT
1
lr = 5 [(tr T)? — tr T?]

[y = detT =

=

Equation (2.55) may be expressed as

{% det F(X + wé)] . = Jtr <Flg—§(>

[(trT)? — 3 (tr T) (tr T?) +2 tr T?] .

w=0

(2.55)

(2.56)

(2.57)
(2.58)

(2.59)

(2.60)

where J = detF, and the linear part of det F relative to the configuration R takes the form

. == [t o€ = —10¢
LldetFi €. = T+ Ttr (F ax) — T+t <F ax)] . (2.61)
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Alternatively, taking into account (2.39), one may obtain an Eulerian form of the above

linearization by rewriting (2.60) as

DI(x,€) = T tr (F%) T {F (gi ﬂ

= Jt [FF éﬂ . (tr[AB] = tr[BA)])
=Jt (gf) = Jdivé€, (2.62)
where div & = dé 4. therefore
L[J;€, = J+Jdive = J(1+divE) . (2.63)

For the special case of linearization with respect to the reference configuration, equations (2.47)
and (2.51) imply that

L[J:€lx = 1+DivE = 1+tre(§) = 1+tre(u). (2.64)

da
Also, consider the linearization of — A namely the ratio of the surface element areas of the
current over the reference configuration. To this end, start with Nanson’s formula (1.12),

from where it follows that

da T *
T = JF'N = F'N, (2.65)

where

F* = JF ' (2.66)

is the adjugate of F. Upon taking the dot-product of each side of (2.65) with itself, one finds
that

(j—j) = (F'N) - (F*N)
= N (F'F*N) = N (C*N), (2.67)

where

C* = F'F* = J°C'. (2.68)

4In strict terms, one should use the notation div€ for this term, but the extra overbar is neglected here.
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It now follows from the usual definition (2.7) that
p (1)  xe) - [L N oo+ we)N} (2.60)
dA ST dw v o ‘
where
d .. 2(
—C* (X + wé€) = —{J (X +w&)C™ (x+w§)}
dw w=0 w=0
— | d ——1 =2
= 2] |—J(X —C ' (x (2
J {de(ijwE)]w_OC +J dwc (x+w§)}w_0 (2.70)
Since CC™! =1,
d -1 —
[% {C(i#—w&)(}_l(i%—w{)}} = DC(x,£)C ' +CDC(x,¢) = (2.71)
w=0
therefore p
IwE) = oo txrug| = -CDegT (272)
w=0
or, in light of (2.45),
s
P el T | =T % = w17 _ o0&
(%,£) = -F 'F ' |2F ((ﬁ) FIF'F' = oF (ax (2.73)
Return to (2.70) and substituting in it (2.62) and (2.45), it follows that
v [ 06\ -
[%C (X—l—wﬁ)}wzo = 2J [JdivE]C  +J |-2F (8){)
= 27" |diveC (gi) (2.74)
This means that (2.69) takes the form
da \? . da da | _
= N-27° |divéC ' - F (gf) F|N, (2.75)
hence
da| _ dA 23
D [d_A] (x,€&) = (da)N T d1V£C (0_) F'|IN (2.76)
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and, accordingly,

da da da | ,_
When the linearization is performed with respect to the reference configuration, it follows
from (2.47) and (2.51) that (2.76) reduces to

D [j—ﬂ (X,¢) = N- :divgl— (%)S] N

S
= N- Divgl—(a—£> ]N

i 0X
= N-[tre(§)I—e(§)N
= tre(u) — N-e(u)N (2.78)
and
L {3—;; E] . = 1l+tre(u) —N-g(u)N . (2.79)

The balance laws are also subject to linearization. For instance, consider the balance of

mass in the form (1.63) and linearize it relative to the configuration R, that is, write
Llpo;€lx = LlpJ:&lx = (2.80)
which leads, with the aid of (2.62) to

po = pJ + D[pJ|(X,§)
= pJ + Dp(,&)J +pDJ (X, &)
= pJ+ Dp(X,€)J +pJdive . (2.81)

Assuming that conservation of mass holds in R (which is tantamount to letting p be such
that py = pJ), it follows from the above that

Dp(x.&) = —pdive | (2.82)

so that
Llp;€ly = p+ (—pdive) = p(l —dive) . (2.83)

In view of (2.82), the special case of linearization with respect to Ry readily yields

Llpi€lx = po(1—=divg) = po(1 —DivE) = po(1 —tre(§)) = po(l —tre(un)), (2.84)
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which implies that conservation of mass may be expressed as

p = po(l—tre(u)) (2.85)
Note that p is not equal to pg when linearized with respect to Ry.

Lastly, consider the balance of linear momentum (1.71) in spatial form and take its linear

part with respect to R, which is
L[divT; €]+ L[pb; &l = Lpit; €l¢ (2.86)

The differential of each of the three terms in the preceding equation is considered separately.

First, write the acceleration term as

DIpil (&) = |1 {plx+ugix+ue)|  — —pavei+pE (280
w=0
with the use of (2.82) and the fact that ii(x) = X. Next, the body force term becomes
d —
DIb)(x.€) = |10 (o + wEbx+ug))| = paiveb+pDbx ) (259
w=0

where, again, use is made of (2.82) and also of the definition
L[b;¢l. = b+ Db(X,€) . (2.89)

For the stress-divergence term, it can be shown that

D[divT] (X&) = {% {divT<f+w£>}1

w=0
[ d =
= le |:%T(X + UJ&):| — kafk,je,-
w=0
= div[DT(X,§)] — grad T - grad” § . (2.90)

Note that a constitutive equation for T is required in order to evaluate the first term on the
right-hand side of (2.90)3. To derive (2.90), it is best to resort to component representation,

as follows:

D[divT](x,€) = :% {divT(x + wﬁ)}} .
[ d TR + we)

— Ldw 9(z; + wg;) ]wfi

[ d {8Tij(i+w£) 0wy, H

_% 8§k 8(@ + wfj) w:Oei

_ |4 [9Ty(E + wE) oz, 0Ty [d [ Om N
|dw OT, w0 OT; 0T [dw | O(T; + w)) o

w=0

(2.91)
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Note that it is not possible to switch the order of the differential operators ﬁ and (,%

in (2.91), as the latter is explicitly dependent on w.® To evaluate the second term on the
right-hand side of (2.91),, observe that

d a(fk + wfk) 8fl _ d B
{% { om O(F, + i) H T {% {5@'}] =0 (2.92)
therefore,
d [ 0@k + w&) d o7, B
[% { oz szo CAR [% {3(@ + wé;) szo - (2.93)
hence ; o
Tl L ‘

Equation (2.90) follows upon substituting (2.94) into (2.91),.
Return to the linearized statement of linear momentum balance (2.86) and taking into
account (2.87), (2.88) and (2.90), it follows that

divT + div [DT(, £)] — grad T - grad” &€ + pb + {—pdiv&b + pDb(%, €) }
= B0+ {—ﬁdiv £U + pé} . (2.95)
Assuming that linear momentum balance holds in R, the preceding equation reduces to
div [DT(X, €)] — grad T - grad” € + pdiv&(d — b) + pDb(X,£) = p€ (2.96)
or, equivalently,
div [DT(X, €)] — grad T - grad” ¢ + div T div€ + pDb(X, &) = p€ . (2.97)

Assuming that the refefence configuration Ry is initial stress- and initial acceleration-
free, it is immediately obvious from linear momentum balance that the body force vanishes

as well in this configuration. As a result,

Llisgly = Di(X.€) = a. (2.99)

5This point appears to have been overlooked in T.J.R. Hughes and K.S. Pister, “Consistent linearization
in mechanics of solids and structures”, Comp. Struct., 8:391-397, (1978).
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and
Lb;€lx = Db(X,§) = b. (2.100)

It follows from (2.97) and the above three equations that the linearized statement of linear

momentum balance with respect to Ry reduces to

Dive + pob = poa . (2.101)
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Chapter 3
Incremental Formulations

A typical procedure for the solution of continuum mechanics problems using the finite element
method starts with the derivation of a weak (e.g., Galerkin) form of the governing (balance)
equations from the original strong form. In general, the weak form comprises a set of
integro-differential equations in space and time. Next, these equations are considered in a
given time domain (real or implied by the application of the external loads). The solution of
these equations is now performed by partitioning the time into time increments and deducing
the solution from the beginning of the first time increment (where this solution is assumed
to be given) to the end of the first time increment, and so on up to the end of the last
increment. This process gives rise to the term incremental formulation for the solution of
the continuum mechanics equations.

Each incremental solution requires that dependent variables of the problem be interpo-
lated in space. This reduces the original integro-differential equations in space-time to merely
differential equations in time. Upon observing that the incrementation in time induces a
natural discretization, it follows that the preceding differential equations in time are further
reduced to either implicit (generally, non-linear) algebraic equations or merely explicit equa-
tions. The solution to the former requires some iterative approach (e.g., Newton-Raphson

method or its variants), while the latter does not.

3.1 Strong and Weak Form of the Balance Laws

Consider a motion x : Rg Xx R — R C &3 of a body, as in (1.3), which is due to externally

applied loads. Note that the preceding definition of this motion is predicated on the existence

36



Strong and Weak Form of the Balance Laws 37

of a reference configuration Ry. In this case, recall that the displacement field u is defined
as in (2.34), see also Figure 3.1. If a reference configuration is not available, then one needs
to formulate the strong and weak forms of the initial /boundary-value problem without using

(explicitly or implicitly) such a configuration.

€1

Figure 3.1. Reference and current configuration

Let the boundary OR of R be smooth enough for a unique outward unit normal n defined

everywhere on OR, as in Figure 3.2. Assume further that the boundary OR is decomposed
into parts I', and I'; such that at any time ¢

R = T,UT,. (3.1)

These two parts are defined as

OR

F i

qi

Figure 3.2. Partition of boundary OR of R

r, = T, , T,=U0_T,, (3.2)
such that
u; = ui(x,t) on 'y, (Dirichlet boundary conditions in solids) (3.3)
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38 Incremental Formulations

or
v; = Ti(x,t) on T, (Dirichlet boundary conditions in fluids) (3.4)

and

t; = tj(x,t) on Ty, (Neumann boundary conditions) (3.5)

where 1 (resp., V) and t are the prescribed displacements (resp., velocities) and tractions on
OR and
LN, = 0. (3.6)

Note that the components in (3.3-3.5) do not need to be those resolved on the basis vectors
{e;} associated with the current configuration.

The strong form of the general initial/boundary-value problem in continuum mechanics
can be stated as follows: given the external forces and prescribed displacements (resp.,
velocities) b, t, U (resp., V) defined as above, the initial velocity and density fields vy and
po, and a constitutive law for the Cauchy stress tensor T, such that T = T7, determine
the displacement field u such that det M
density p > 0, such that, for all ¢, linear momentum holds in the form (1.71) or (1.74) and
mass balance holds in the form (1.66) or (1.63), subject to the boundary conditions (3.3)

(or (3.4)) and (3.5), and the initial conditions

> 0 (or the velocity field v) and the mass

LI(X,O) =0 > U(X,()) = Vp in RO (37)

for solids and
v(x,0) = vop inR (3.8)
for fluids.
At every point x of the current configuration, define a tangent vector € = £€(x,t), that

is any vector which originates at x, as in Figure 3.3. Define the space of admissible tangent
vector field W as

W = {5:RxR—>S3 L G(xt) = oOnruZ} , (3.9)

that is, such that & vanishes identically where a displacement or velocity boundary condition
is enforced.

Now define the weighted residual form

R = £ (pii — pb — div T) dvdt + £ (t—t)dadt (3.10)

RxI DgxI
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R

Figure 3.3. Tangent vector at a point in the current configuration

where I = (to,T) is the time domain of the analysis. Note that the second integral on the
right-hand side of (3.10) is understood as being a short-hand for ) . qu,i & (t; —t;) dadt, that
is, it includes the contributions of all the components of the prescribed traction in all of their
directions.

The weak form of the general initial /boundary-value problem in continuum mechanics
reads as follows: given the external forces b and t, a constitutive law for T, such that
T7 =T, find the displacement field u € U (or the velocity field v € V), such that

R =0 (3.11)

for all £ € W. Here,

U = {u:ROX]R—HS’?’\ det(IJrg—;) >0, w(X,t) = wonly,,

u(X,0) = 0, u(X,0) = vo} (3.12)
for solids and
V= {v:RxR—=&|vy(xt) =y onl, , v(x,0)=vo} (3.13)

for fluids. In the solids problem, mass conservation is enforced trivially, in the sense that,
given py > 0 at time ¢y, one may find p as a function of py and the deformation, according
to (1.63). Therefore, there is no need for mass conservation to be enforced through the
weak form. On the contrary, in fluid mechanics, one needs to additionally enforce mass
conservation according to (1.66). To achieve this, the weighted residual R of (3.10) must be

amended by an additional term as

R = &-(pu—pb—divT) dvdt+ £-(t—t) dadt—i—/ o(p+pdivv)dudt , (3.14)

RxI LgxI RxI
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such that a solution (v,p) € V x Z7 is sought by enforcing (3.11) for all (£,0) € W x Z,

where

Z={0:RxR=R} , Z" = {0:RxR—-R|o>0} . (3.15)

Additional assumptions on smoothness are required for the functions in &, V,W,Z in order
to guarantee the existence of the integrals which comprise R in (3.14). These requirements
will be discussed when introducing finite element counterparts of these spaces.

It is worth observing here that the balance of linear momentum (as well as the mass
balance in fluids) and the traction boundary conditions are enforced through the weighted
residual form. On the other hand, the displacement (or velocity) boundary conditions and
initial conditions are satisfied from the outset by the choice of admissible fields ¢ or V. In
addition, balance of angular momentum is satisfied by the constitutive law for stress.

The above strong and weak form are equivalent (that is, derivable from each other) only
under the assumption of continuity of all integrands in (3.10) or (3.14). This is a fairly
severe assumption, which, when violated, leads to solutions obtained from the weak form
(termed weak solutions) that may differ from the strong solution where/when discontinuities
are encountered.

The complete proof of the preceding result may be found elsewhere. Here, only a sketch
of the proof is provided, as follows: first, it is clear by inspection that the strong form implies
the weak form. for the opposite, note that (3.10) (or (3.14)) applies for any & € W (and,
o € Z, if applicable). Now fix a time ¢ and choose £ such that £ =0 on I'; (and also o =0
on R, if applicable). Next, argue, by contradiction, that if there is a point x € R where
pa—pb—div'T # 0, then one may choose £ to vanish everywhere and every time except in a
neighborhood Ny of x in which & - (pa— pb —div T) > 0, which is always possible due to the
continuity of the preceding scalar quantity. It follows that fo ;& (pa—pb—divT)dvdt > 0,
which contradicts the original assumption, thus pa — pb — div T = 0 everywhere in ‘R at all
times t. Then, the same argument may be repeated on I'; (as well as on R for the continuity
equation in (3.14), if applicable).

Proceed with separating the space from the time integrals in the weighted residual

form (3.10), and consider first the spatial integrals (that is, “freeze” time). In particular, set
/£~(pﬁ—pb—divT)dv+/£-(t—f)da: 0 (3.16)
R Lq

and note that, upon using integration by parts, the divergence theorem, and the property
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of & specified in (3.9)
/ §-divTdv = / §ilijjdv = / (&iT5) 5 — &3 Tis] dv
R R R

= / fiTijnjdG—/fi,jTide
OR R

= / fiTijnjda—/fz',jTide
Ul R

= 5z‘7fida—/ &, 13 dv
r, R

23
= E-tda—/—-Tdv. 3.17
. - ox (3.17)
Substituting the preceding expression to the weighted-residual form (3.16), it follows that
. 0€ _
E-pudv+ | = -Tdv = £ -pbdv+ | €-tda (3.18)
R r 0% R Iy

The full space-time integral form can be easily reconstructed from the above. Observing
the symmetry of T, the second term on the left-hand side of (3.18) can be also written as

fR (%)s - T dv The above expression is computationally convenient, as it involves the term

oe\® 110 oe\"

(%) -} [a_ﬁ (a—i)] 19
which resembles the infinitesimal strain tensor. This observation is important when attempt-
ing to extend finite element formulations originally developed for infinitesimal deformations
to finite deformations.

If ¢ is identified as the wvariation du' of u, one obtains a statement of wvirtual work,
according to which the virtual work done by the internal forces (inertial forces and stresses)
is equal to the virtual work done by the external forces (body forces and surface tractions)
over the whole body occupying the configuration R. A corresponding statement of virtual
power is obtained from (3.18) when £ is substituted with a virtual velocity. It is instructive
to contrast these statements to the mechanical energy balance equation for the whole body,
see (1.80).

One may assume at the outset that the traction boundary conditions (3.5) are satisfied
at the outset and do not need to be included in the weighted residual form (3.10). While

'Recall that, by definition, the variation of u vanishes where u is specified, which confirms that the space

of admissible variations of u is precisely W.
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this goes against the premise of finite element modeling (where one may one directly impose
boundary conditions on the dependent variables that enter the finite element approximation),

it is instructive to consider this option, where the weighted-residual statement is reduced

/ £ - (pa—pb—divT)dv = 0 (3.20)
R
for all & € W. Repeating the preceding procedure leads to:
0
/&padv%—/—g«Tdv:/ﬁ«pbdv—l—/é-tda. (3.21)
R r OX R T,
Upon now enforcing (3.5), one immediately recovers the derived weighted-residual statement

in (3.18).
A completely equivalent weighted-residual form can be derived based on the referential
statement of linear momentum balance (1.74). In this case, one observes that the tangent

vector & may be represented as

€ = EX,1) = &(x.1). (3.22)
Next, “freeze” again time and start from the weighted residual statement

Ry = £ (poa— pob — DivP)dV + E-(p—p)dA = 0, (3.23)
Ro

Ty

for all & € W, where p = PN is the traction vector on the boundary of the body in
the current configuration, but resolved using the geometry of the reference configuration.

Repeating the same procedure as with the spatial weak form, it is easy to show that

£ poadV + % pav = £-pobdV+ | €-PdA. (3.24)

Ro Ro OX Ro Ty

Recalling (2.36), it is concluded that the integrand of the second term on the left-hand side

of (3.24) satisfies
o€ B
P = DF(X.§)-P. (3.25)

Furthermore,

)3 _0¢ B 22

a—X-P_a—X-(FS)_ (FTaX) S
1
2

where use is made of (1.85), (2.41), and the symmetry of S.
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3.2 Lagrangian and Eulerian Methods

Preliminary to the presentation of any specific finite element methods, it is essential to
formally distinguish between Lagrangian and Eulerian computations. To this end, consider
a body occupying the configuration R at time and define a surface S(t), as in Figure 3.4,

which may be represented by the parametric equation

xs = x4(&,1,1), (3.27)

where &, n are surface parameters. These parameters may be eliminated to obtain an alter-

S

R

Figure 3.4. A surface S traversing the configuration R at time t

native representation of the surface as
f(xs,t) = 0. (3.28)

Taking the time derivative of the above equation, while following any given point on the

surface, it follows that

of of _

where v is the velocity of the surface, see Figure (3.4), which can be readily obtained
from (3.27). Alternatively, consider a material point which occupies a point x € S at time ¢.
The material time derivative of f describes the rate of change of f for the given material

point. This equals
. of of
I=ar oV
where v = x is the velocity of the particle, see, again, Figure 3.4. Generally, at the fixed
time ¢, vy # v. Hence, subtracting (3.29) from (3.30), it follows that

. of
f=g0v=vy (3.31)

(3.30)
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and, since the unit normal n to the surface may be written as

QJlQ)
X I~

n = : (3.32)

it is concluded that the flux of mass through the surface & at time ¢ is given by

[Sp(v—vs)~nda = /Spf‘g—i_

Upon invoking the localization theorem, it follows from the above that the necessary and

@lQﬁ
X I~

1
da . (3.33)

sufficient condition for the flux of mass through S (or any part of it) to vanishes is f=0,in

which case

(v—vs)-n = 0. (3.34)

This mandates that the surface S and the material particles on it travel with the same
normal velocity to §. In this case, the surface § is called a material surface. The necessary

and sufficient condition

f=0 (3.35)

is referred to as Lagrange’s criterion of materiality.
Assume that at any given time t the region R is spatially discretized according to
R = U°, where €2 is the domain of the typical finite element e, such that all bound-

/TN

S

Figure 3.5. Finite element mesh schematic

ary surfaces (or edges) of each Q¢ are material. Lagrangian finite element computations are
making use of finite elements with domains whose boundaries are material.

To understand how it can be guaranteed that the boundary of a finite element domain are
material, note that in Lagrangian finite element computations the motion of the element is

completely parametrized by the motion of its nodal points. Hence, the finite element system
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is finite-dimensional, in the sense that the motion of the discretized body is fully determined
at any given time t by a finite set of parameters.

Consider a typical surface S of a finite element domain €2¢, in the context of classical
isoparametric interpolations. For a typical point X on S in the reference configuration, one

may write

X = ZM(& n)X; (3.36)

where (£,n) are the natural coordinates (which coincide, here, with the surface coordinates),

Figure 3.6. Lagrangian finite element surface

N; are the isoparametric shape functions, and X; the position vector of node 7 on S, as in

Figure 3.6. The point X is mapped in the current configuration to x = x/(X,t), such that

x = ZNi(é,n)Xz*
- S N
- iM(é,n) X+ uy]
_ iNi(ﬁ,n)XﬁZM(&n)ui = X+u. (3.57)

The surface S is clearly material, since it consists of the same material points at all times
with respect to the motion x of the nodal points ¢ and the isoparametric interpolation.
Put differently, all x; are material points by definition, while any x on S is also material by
construction of the motion in terms of the nodal motions and the isoparametric interpolation.

Alternatively, one may consider an Eulerian finite element formulation for which the
mesh is stationary, that is v, = 0 on the boundary 0Q° of any element element e. In this

case, each element becomes a control volume. In view of (3.34) it is clear that the element
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region ¢ is not material. Thus, mass flux takes place across 02¢, which necessitates that

mass balance be enforced through the equation

/ o(p+ pdivv)dv = 0, (3.38)

for all admissible o, as also argued earlier (see (3.14)).

Lagrangian and Eulerian methods have both advantages and disadvantages from an algo-
rithmic standpoint. For instance, when Eulerian methods are used for solids or free-surface
fluids, then

(a) A geometric detection algorithm is required to identify the “full” elements at each

time ¢, see Figure 3.7.

(b) A special treatment is generally needed for “partial” element at each time ¢, see again
Figure 3.7.

(c) The application of Dirichlet conditions on the physical boundary is not necessarily

trivial.

| full element

/—\

/\ A

partial element

\Q”)J/

N N

Figure 3.7. Eulerian finite element mesh with a moving solid or fluid

Moreover, the tracking of material-based history variables requires a special procedure, since
such variables cannot be directly stored at nodal or integration points.

Lagrangian methods suffer from excessive mesh distortion, which may cause loss of
uniqueness in the isoparametric mapping, as well as from inability to directly handle loss of

materiality, as is the case, for instance, when modeling crack propagation or fragmentation.

ME280B May 7, 2019



Total and Updated Lagrangian Methods A7

3.3 Semi-discretization

As done earlier, it is customary (and practical) to separate the time from the space integrals
in (3.14), which often referred to as semi-discretization. Assuming that the solution must be
determined in the time domain (ty, 7], perform a time discretization by introducing a finite

sequence of distinct times ¢, t, ..., ty, as in Figure 3.8. Here, At,, = t,,11 —t,, is the discrete

to 131 to tn bny1 tn—1 tn=T

Figure 3.8. Time discretization

time step at time t¢,, and

N
At,_
; o T — 1

At = " = (3.39)

is the average step size, with the understanding that At,, = O(At), n=0,1,..., N — 1.

The basic idea of incremental methods is to satisfy the equations of motion only at
discrete time instances tq, ¢, ..., ty, where at each such ¢, .1, the solution to these equations
is known for all t;, 7+ = 1,2,...,n. In the limit as N — oo, incremental methods recover a
solution in a dense subset of (o, 1.

Incremental methods make sense on two grounds. First, they recover the history of a
deformation, which is oftentimes, in itself, useful to the analyst. Second, they are necessary
when modeling continua made of path-dependent material or which are subject to path-
dependent loading. In the latter case, iterative methods are essentially used to resolve the
path-dependency.

A weighted-residual interpretation of semi-discretization can be obtained by starting
from (3.10) (similarly, for (3.14)) and writing &£(x,t) = 6(t)&€(x), such that

T
R = / 7 /E-(pa—pb—divT)var £-(t—t)da| dt =0, (3.40)
to R Fq
where the time-dependent weighting function 6(¢) is defined as 0(t) = ZZ]\LI 0;0(t —t;). This

discretization leads naturally to the requirement that linear momentum balance and traction

boundary conditions must be enforced at each of the times ¢, ¢, ..., tx.
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3.4 Total and Updated Lagrangian Methods

Consider an incremental Lagrangian method and assume that the balance laws have been
already satisfied (in a weak form) and the motion x has been determined for times 1, to, ..., t,,
see Figure 3.9. The objective is now to determine the position of all material particles

(therefore, the configuration of the body) at t = t,,,1, such that

N QC

Figure 3.9. Configurations at times ty, t,, and t,, 1

n+1

a S
/ &1 Prr1@ny1 dv + / (8—6) Typp1 dv
Rt Rat1 \9X/ i1

:/ €n+1-pn+1bn+1dv+/ €1 tupida, (341)
Rn+1

Fqn+1

for all £, ., € W. The preceding equation may be resolved iteratively for the displacement
field u,.; € U (or, equivalently, the relative displacement field u,.; — u,), assuming the
data (that is, b and t) is known in (¢, t,1]-

Alternatively, one may pull-back (3.41) to the reference configuration and write

o€,
&1 Poan1 dV + %y

‘P, dV
Ry r, O0X +

= &1 pobr1dV + €1 Do dA, (3.42)
Ro Ty,

for all §,,;, € W. Note that, since, in general, I'; depends on time, by I'y, in (3.42),

one denotes the pull-back of I" to the reference configuration, rather than the traction

an+1

boundary of the reference configuration itself.
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Starting with the referential weak form (3.42), concentrate on a typical Lagrangian finite

element e with domain € in the reference configuration. For this element, write at t = ¢,,4;

NEN
N € - (5] €
g =u;,(X) = E Njug, .,
i=1

NEN

o a,1(X) = ZNfaan, (3.43)
i=1
NEN

Qs :€Z+1(X) = ZNfﬁan,

i=1

U(X, t?’H—l)

a,11(X, thy1)

€n+1 (X7 tn+1)

where the element is assumed isoparametric with NEN nodes and interpolation functions
Nf(X), 71 =1,2... ,NEN. Special cases, such as those involving hierarchical, mixed or incom-

patible interpolations can be easily handled by extending the above definitions.

For ease of computer implementation, one may write the preceding interpolations in

matrix form as

NEN

e - e..e
U, = E Niu; n+1
i=1

uj
Nfl; NE1lg -+ Nyl u; .
= |2 LT = N (3.44)
(3x3)
3><(3‘>:NEN) UEEN 1
N————
(3XNEN)x1

where [0 ] is a vector that contains all nodal displacements, while 13 denotes the 3 x 3

identity matrix. Similarly, one may write

~e

an, = [Ne][éZH] v & = [Ne][£n+1]‘ (3.45)

Also, to resolve in convenient matrix form the stress P, and the derivative 3%6;“ in (3.42),
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write their 9 components as column vectors according to

Py €11
Pay £5.2
Ps3 £53
Py e &
(Pry1) = |Pas Pnia = 622 : (3.46)
’ X 29
Py €51
Pr3 SE
Py §51
_P32_ n+1 _5572_ TL+1
Thus, one may write
8€€+1 ~€
ontl N B¢ 3.47
() = Bl Eel 347
—— 9% (3XNEN) (3XNEN)x 1
(9%1)
where
Be — [ Be Be . B6 ] 348
B = [BY B - B (3.48)
9x (3XNEN) (9%3)
and [B¢] is such that
-Nilgiel-
Nz%?&ieg
N53€7:63
Nio&i,
< Bl‘?gfn+1 > = | Nf&l (no summation on 1) , (3.49)
Nz%lfieg
N?f3€’£61
N;lfieg
_N’52€7:63_ n+1
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consequently
_Nfl -
NZ%Q
N53
Nzﬁ?
[Bf] = Nf, , (3.50)
~—~ ’
9x3 N
N’il
L NiQ-
where Nf, = gxli‘

Likewise, to express the spatial statement (3.41) in matrix form, one need to express the

(symmetric) stress T,,;; and the derivative (%) as 6-dimensional vectors according to
kN [ §a ]
T 52
T 0E°\’ &
o = 20 (5e) )= e e
T X/ nt1 SERESE
Ty &3+ &5
| T3 | - €51+ &7 3] et
It follows that
9N\’ . se
= [Bn—l—l] [Sn+1]
0x n+l N—— N~
S——— 6x (3xNEN) (3XNEN)x 1
6x1
3
_ [BinJrl] [Bg,n+1] T [BEEN,H+1] ?2 , (352>
6x3 :
Ee 1
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where -~ _
szl
N¢
Bl = | e (353)
—— Ni,2 Ni,l
6x3
Ni€,3 N;Q
| Vis Nt o
and N, = %J;[e , where now it is understood that the element interpolation functions are
’ J

functions of the current position of the element points, that is, Nf = Nf(x).

Substituting the interpolations (3.44), (3.45) and (3.47), and the vectorial representation
of stress from (3.46); to the weak form (restricted to the domain €2 of element e), one finds
that

N [N dv> )+ )’ [ BT <Po > av

e
0

= el [ INTpuldV + " [ INTp. A

S 9QGNT g,

~e

+ [€n+1]T/ [Ne]Tpn+1 dA y (354)
95\I'gq

where 0Q§ N Ty, is the part of the element boundary which (potentially) intersects with the

Neumann boundary I'y, and 092§\ I, is the rest of the element boundary, as in Figure 3.10.

008 N T,

2

/
0\ Ty

Figure 3.10. Partition of element boundary O

The preceding statement may be compactly rewritten as

~e ~e

(€] [IME][A7, 4] + [R5 )] — [Frpa]] = [€,0)" /6 o N [pysa]dA (3.55)
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where
[M°] = / [N po[N®] dV (3.56)
v QS
(3XNEN) X (3xXNEN)

is the element mass matriz, which is clearly symmetric,

R = / (B <Py > dv (3.57)

0
(3XNEN)x1

is the element stress-divergence vector, and

B = [NTabaaas [ N, (3.58)
(3XNEN)x1 0 6o

is the element external force vector.

Since &, is an arbitrary tangent vector on the current configuration, it follows that
M)+ [R5 )) = (Fi)+ [ N fpoalda- (3.59)
998\,

Under the action of the assembly operator A, the above equation leads to
e

A [M)[as ] + [Re(a; )] = A |[Fr ]+ / NI [prns1] dA (3.60)
e e 998\T'y,
which, in turn, yields
M}lag 1] + [R(an41)] = [Fraa] (3.61)
where
M] = AM (3.62)
is the global mass matriz, which is symmetric,
Rus1] = AR ] (3.63)
is the global stress-divergence vector, and
[Foii] = AlF; ] (3.64)

€

is the global external force vector. In (3.61), the term A |, sacvr, [(N" [Pri1] dA, which quan-
. 0\ a0

tifies the cumulative interelement jump in tractions is neglected, as is customary in finite
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element approximations. This term is frequently used to quantify the error in the finite
element analysis a posteriori. In addition, the global displacement and acceleration vectors

are defined as
-1 Al

un+1 anJrl

(] = | "7 v ] =TT (3.65)
-~ NUMNP A NUMNP
n+1 n+1

where NUMNP is the total number of nodes in the mesh. Equations (3.61) constitute the semi-
discrete form of linear momentum balance, that is, the approximate equations of motion
obtained after spatial discretization. This is a (generally) non-linear system of second-order
ordinary differential equations in time, with unknowns the nodal displacements 1,,,1. Under
quasi-static conditions (that is, when the inertia term can be neglected), the above system
of equations becomes purely algebraic. Also, Dirichlet boundary conditions are readily ac-
counted for by merely fixing the relevant displacement degrees-of-freedom on nodes which
lie on ', and, if desired, calculating the corresponding forces upon solution of the overall
problem as reactions.

Note that the stress-divergence vector in (3.57) may well depend not only on 4,1, but
also on v,11. This would be the case when the stress response is rate-dependent. Also, the
external force vector in (3.58) may be explicitly dependent on the motion, as would be the
case, for instance, when the externally imposed traction is a follower load (e.g., a pressure
load). In this case, F,,11 = F,11(0,41), so the external force is itself a function of the
solution.

If one chooses to start with the spatial statement of linear momentum balance in (3.41),

an analogous procedure would ensue that would yield the element arrays

M = [ NN (3.66)
~—~— .
(3XNEN) X (3xXNEN)
Ry = / B, )" < Toyy > dv (3.67)
— (=
(3XNEN)x 1
and
F,] = / NI by dv + / [N (G ] o (3.68)
~—~— ¢ 8Qenly,

(3XNEN)x1
The system of differential equations in (3.61) may be integrated in time using one of

several standard integration methods. The most commonly used such time integrator in
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solid mechanics is the Newmark method,> which is based on a time series expansion of

(QWp41, Viny1), such as one may write in the time interval (¢, ;1]

. . . 1 . .
U,+1 = Uy + VnAtn + 5 [(1 - 26)8% + 2ﬁan+1] Ati

, (3.69)
Vitl = Vi + [(1 - 7)371 + Vén-i-l] At,
where the parameters § and « are chosen such that
1
0 <y <1 , O<5§§, (3.70)

and the brackets around each of the matrix terms is dropped for brevity. It is easy to show
1
4
be solved for the acceleration a,, .1 as

that the special case = 3,7 = % corresponds to the trapezoidal rule. Equation (3.69); may

N 1 . . R 1-28.
Ay = AR (Apy1 — 0y, — v, AL,) — 5 a, . (3.71)
Substituting the above to (3.61) yields
Lo ) oA 1 1—28,
5At%Mun+1 +R(Un41) = Frpg + M (0, + V,AL) BAL + % a, ;o . (3.72)

N J/

vV
known quantities

The preceding system of non-linear algebraic equations for 1,11 can be solved using a stan-
dard iterative method (e.g., the Newton-Raphson method or one of its variants). After @,
is determined, a,;; and, then, v, ; are computed from (3.71) and (3.69), respectively.
An alternative solution sequence would entail substituting (3.69); into (3.61), solving for
the acceleration a,41, then substituting it back into (3.69);2 to determine G, 41 and V4.
In either approach, minor and straightforward modifications suffice to accommodate the
case where F,, 1 depends explicitly on 1,1 or the case where R,,.; depends explicitly on
both 0, and v, ;.

The above time integration scheme is implicit, in the sense that determining the state at
time ¢, requires the solution of a system of algebraic equations. A weighted-residual formal-

ization in time can be easily formulated results in deriving the Newmark equation (3.69).

2N.M. Newmark, “A Method of Computation in Structural Dynamics”’, J. Engr. Mech. Div. ASCE,
85:67-94, (1959).

30.C. Zienkiewicz, “A New Look at the Newmark, Houbolt and other Stepping Formulas. A Weighted
Residual Approach”, Earthquake Engin. Struct. Dyn., 5:413-418, (1977).
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An explicit integration scheme may be obtained from the Newmark formulae by setting
£ = 0. This leads to the equations

1
Upy1 = 0, + V,At, + -a,At?
2 (3.73)

It is again easy to show that in the special case v = 0.5 one recovers the classical centered-
difference method. The general explicit Newmark integrator is implemented as follows: start-

ing from the semi-discrete form (3.61), one may substitute @,1 from (3.73); to get
1
Ma,., = F,.1 — R(a, +v,At, + §énAth) : (3.74)

If M is rendered diagonal,* then &,,; can be determined without solving equations. Sub-
sequently, the velocity vector v,,1 is computed from (3.73)s. Note that the displacement
vector W, is updated through (3.73); without using a,.

As with the implicit Newmark scheme, it is easy to accomodate the case where F,
depends on 1,;;. On the other hand, if R, ;; depends on 1,1, then the explicit nature
of the time-stepping may not be preserved unless one resorts to a time-shifting modifica-
tion, in which the term Ry, 11 (0,41, Vi) is replaced, at an error that depends on At,, by
Rt1(Qpg1, Vi) o Ryy1 (Qpgr, Vi + &, At).

Explicit time integration is computationally inexpensive, as there is no need to compute
gradients and solve coupled algebraic equations. However, explicit time integration can only
be conditionally stable, that is, the step-size must be restricted (sometimes severely) to yield
convergent solutions.

The preceding formulation is often referred to total Lagrangian. This means that the mo-
tion and deformation is always measured relative to the original fixed reference configuration
regardless of its magnitude. Alternatively, one may choose to measure the motion and de-
formation at time ¢, relative to any previously determined (and, therefore, de facto fixed)
configuration at time t = t;, where k = 1,2,--- ,n. The so-called updated Lagrangian formu-
lation is specifically obtained by measuring the motion and deformation at ¢ = ¢, relative
to the configuration at time ¢ = t,,.> To this end, consider again a motion x : Ry x R — &3,

as in Figure 3.11.

4See Appendix H of O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, The Finite Element Method: Its
Basis & Fundamentals, 7th edition, Butterworth-Heinemann, Boston, (2013), for full details on the theory

and practice of mass matrix diagonalization.
5K.-J. Bathe, E. Ramm, and E.L. Wilson, “Finite element formulations for large deformation dynamic

analysis”, Int. J. Num. Meth. Engr., 9:353-386, (1975).
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Figure 3.11. Configurations for updated Lagrangian formulation

Note that, by definition,
x, = X(X,tn) (3.75)

and

Xp4+1 = X(thnJrl)a (376>

so that a mapping X, : R, X R — &3 is defined, such that for any time ¢

x = x(X.0) = X6 (%), 0) = X0 (%) - (3.77)

Clearly, x,, is the relative motion with respect to the (generally deformed) configuration R,,.
It follows that the deformation gradient F7;_ ; at time ¢ = ¢,,1; relative to the configuration R,,

is defined as

F» _ 8Xn(X7th+1) _ axn-i-l _ a(Xn—i_ungl) _ I_’_au2+1

el ox,, 0%y, 0%y, ox,

where u;, | = X, 41 — X, is the displacement at ¢, relative to i, see Figure 3.11. Invoking
the chain rule and recalling (3.77),
OX (X, tny1) OXn (X tny1) OX(X, 1)

X - ox,, X (3.78)

or

F.. = F', \F,. (3.79)

It follows from the above that, since det F > 0 for all (X, ), the same applies to F7.; for all
(Xp, t).
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Starting from the spatial statement of the weak form in (3.41), one may “pull-back” to
the configuration R,, to find that

a n
/ Ens1 o Py AV, + / Snt Poi1dVs
R R axn

= / €Z+1 : pan-&-l an +/ €Z+1 '524-1 dAn ) (3-80)
Rn Lyp

where
£ = E(X,t) = 5(Xm&<xn)>t) = £n<xnvt)7 (3'81>
hence

EZ—H = £n(xmtn+1) . (382)

Also, for the acceleration and body forces

a = a(x,t) = a(x,(x,,t),t) = a"(x,,t) (3.83)
b = b(x,t) = b(x,(Xu1),t) = b"(xp,1), (3.84)
therefore
ay.; = a"(Xp,thq1) : by, = b"(x,, 1) - (3.85)
In addition,
Pn = Posrdyig (3.86)

where J!; = det F?, ;, which confirms that p, in (3.86) is precisely the mass density of the
body at t =t,,. Likewise,
AV, = —— v (3.87)
Tnt1
and

n, 1 da, . = J'y (F7) 7 n,dA, (3.88)

where n,, and n,; are unit normals to the same material surface at times ¢, and t,.1,
respectively.
Analogous definitions apply for the traction and stress. In particular, the traction vec-

tor p,,,; is defined according to

En+1 dan+1 = §Z+l dAn y (389)
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while P}, is the first Piola-Kirchhoff stress tensor obtained by resolving tractions on the

geometry of the configuration R,,, that is,

p" -

n+l — JTTLL-Q—lTn—i-l (FZ+1> (390)

In view of the above and upon recalling (3.44), one may write for a typical Lagrangian

element which at time ¢ = ¢,, occupies the region €2

NEN
Wt g = W06 = D0 Nur, = [N (3.9)
i=1
and, likewise,
apt, = [NY[ai] , &4 = INE, ] - (3.92)
Furthermore,
e _ ey @l (3.93)
8xn N—— \ﬂ__/ ’
—— 9 (3xNEN) (3xNEN)x 1
(9%1)
where
Ben — [Ben Ben Ben] 394
[B°"] [B{"] [B5"] [Bex] (3.94)
9 (3XNEN) (9%3)
and ) )
Ni(fl
NE2
szS
NE2
Bi"] = Ny : (3.95)
——" ’
9%3 szl
NEZ’)
Nifl
i N,

Note that here Nf = Nf(x,) and Nf; = gxﬂ = gxliFr:jlj'
nj

Substituting the interpolations in (3.91), (3.92) and (3.93) to the weak form (3.80) applied

to element e yields

~EMN ~EM

(€] [ME][A51] + R (07 7)] — [Fr]] = (€, ])" /d - N [prya] dAn - (3.96)
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where
[M°] = / [N p,[N¢] dV/, , (3.97)
v QS
(3XNEN) X (3xNEN)
Rin = [ B <Py, > (3.98)
N—— Qe
(3XNEN)x 1
and
Pl - [ INTabL s [ N4 (599)
N—— Qg 00sNly,,

(3XNEN)x 1
Under the action of the assembly operator A over all elements one recovers the semi-

discrete form of the updated Lagrangian formulation as

May,, + R"(0;,,) = Fi (3.100)
where
nln Aln
Ut A
) ﬁiil AN é‘iﬁl
(] = | oAl =T (3.101)
e aamer

The solution of the above system of non-linear second-order differential equations in time is
achieved as in the total Lagrangian formulation.

The total and updated Lagrangian formulations are completely equivalent, in the sense
that, given the same finite element mesh, they yield the exact same solution. However,
since they involve different unknown vectors ([{,41] for the total Lagrangian and [}, ] for
the update Lagrangian method), this solution is obtained by solving two different non-linear
algebraic systems. Therefore, it is conceivable that one of the two systems may be more easily
(or, given the limitations of finite arithmetic, more accurately) solvable than the other. This

would form a practical basis for selecting one of the two methods over the other.

3.5 Corotational Methods

When solving problems in solid mechanics, it is sometimes desirable to use coordinate systems
which rotate together with a Lagrangian mesh. This is principally the case when using
structural elements (e.g., bars, beams). By way of motivation, contrast the cases of fixed wvs.

corotating coordinate systems for a two-dimensional bar element, as in Figure 3.12.

ME280B May 7, 2019



Corotational Methods 61

L fixed
|

Ro R

corotational

Figure 3.12. Fixed vs. corotational coordinate system

Consider the general case shown in Figure 3.13, where one may identify a rotation
field R(x,t), such that the balance laws are expressed at any point x and time ¢ in terms
of the corotating right-hand orthonormal coordinate system {e;}. This system is related to

the fixed global coordinate system {e;} according to
e, = Re;, (3.102)
for 1 = 1,2,3. Any spatial vector, say v, is resolved relative to {e;} and {e}} as

vV o= ue = vl . (3.103)

R
{ei}

Figure 3.13. General corotational coordinate system

In view of (3.102) and (3.103), one may write

= vjej . (Rez) = Rjivj .

/
' ' (3.104)

P . .. / D
= vje; - €;
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In direct notation, equation (3.104) may be stated as
v = Rlv, (3.105)

where v/ = vle; is the vector with the corotational components ofv on the global basis (hence,
in general, v/ # v).
Similarly, for a spatial tensor, say T, one may write with the aid of (3.102)
T = Te®e; =T e Q¢
= T/,(Re;) ® (Re;) (3.106)
= R(T};e; ® ¢;)R"

which implies that
T = R'TR ; T, =RyTuR; . (3.107)

Of all terms in the weak form of linear momentum balance (3.41) typically only the
stress-divergence term is resolved using the corotational system (the other terms are resolved
directly in the global system). Ultimately, the stress-divergence term is also rotated back to
the global system before the integration of the semi-discrete equations.

Taking into account (3.105) and (3.106), and using the chain rule, the stress-divergence
term in (3.41) takes the form

08\ * B R ——
/R(a—x) Lo = L(a—sm—Q (RTRY)dv

AL r— o1
” ox’

- A(g—i)s~T'dv.

It is important to emphasize that the coordinate system {e}} is not inertial. This means
that if one needs to represent time-dependent effects (such as those of inertia) using a corota-

tional frame, then one needs to explicitly account for the dynamics of the coordinate system.

3.6 Arbitrary Lagrangian-Eulerian Methods

Arbitrary Lagrangian-Eulerian (ALE) methods constitute a creative compromise between

the classical Lagrangian and Eulerian methods. In ALE methods, the mesh undergoes a
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motion which is generally different from the motion of the continuum. The mesh motion
is specifically designed to preserve, to the extent possible, the quality of the mesh as the
continuum undergoes significant deformation.

To set up a general ALE method, consider a body Z# with reference configuration R at
time ¢ = 0, and identify this configuration with an initial “mesh configuration” M, at the

same time, see Figure 3.14. Next, in addition to the usual body motion x : Ry x R — &3,

Zelelelelelele!
SRALELES
RRE50555585)

etetetetstete,
LS

Figure 3.14. Configurations of ALE method

admit the existence of a “mesh motion” x,, : My x R — £3, such that

where, in general, x # x5, when X = X/, as in Figure 3.14. This mesh motion is sometimes
referred to as “arbitrary”, in the sense that it is generally different from the motion of the
body. The velocity v,, of the mesh is now defined as

X (X, 1)

Two special cases arise naturally: (a) x,; = X, in which case the mesh motion is identical
to body motion and the method is Lagrangian, and (b) x,, = i, hence x); = X, in which
case the mesh remains stationary, thereby rendering the method Eulerian.

Attention is focused henceforth to the case x,;, # x and x,; # i. Generally, creative
choices for x;, can provide serious advantages over pure Lagrangian or Eulerian methods
when the continuum undergoes significant non-homogeneous deformations. The mesh mo-

tion x,, is typically chosen to satisfy the following four conditions:
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(i) The ALE mesh consists of elements with better aspect ratios and narrower size distri-

bution than the corresponding Lagrangian mesh,

(ii) The element connectivities do not change (otherwise, the procedure yields a new mesh,

and is referred to as remeshing),

(iii) The mesh motion x,, is assumed invertible at all times, that is,

. X
Jy = det 09X, # 0. (3.111)

As argued in Section 1.1, the inverse function theorem enables the unique mapping of a
mesh point x,; to its referential counterpart X,; and, through it, to a material point x
with which xj; coincided at time ¢ = 0. Actually, since Jy(Xp,0) = 1 and x,, is
assumed smooth, it follows from (3.111) that Jy (X, ¢) > 0 at all times.

Since the mesh motion is invertible, one may write

Vy = \A/M(XM,t) = \AIM(X]T/}t<XM),t) = {/M(XM,t) y (3112)
therefore the mesh velocity may be readily expressed in spatial form.

(iv) In certain classes of problems, the body motion and the mesh motion are chosen such
that the normal components of their velocities coincide on the boundary of the body (or
on part of it) at all times. This is generally the case with problems in solid Mechanics
and in free-surface flow problems of fluid mechanics (at least along the free surface).
This restriction is placed to avoid the flow of material outside the mesh, which would
render it unavailable for approximation. At a given time ¢, let x = x,; lie on the

(common) boundary OR = dM, having outward unit normal n, as in Figure 3.15.

Figure 3.15. Velocity constraint on the boundary of an ALE mesh
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The above constraint on the mesh motion implies that

(Vv—vy)-n

=0

(3.113)

on JR = OM. Thus, the mesh motion x,, is such that it convects with the body

along its boundary. Assuming that the constraint (3.113) is enforced on the whole

(common) boundary of the mesh and body, the kinematic setting for the ALE method

is now depicted in Figure 3.16.

P55
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Figure 3.16. Configurations of ALE method with coincident body and mesh boundaries

The two main tasks in developing an ALE method are: (a) to formulate and enforce the

balance laws on the ALE finite elements, and (b) to prescribe (in an automated fashion) an

appropriate motion x,,.

Consider the first of the above tasks and start with conservation of mass. Let P C R be

a region occupied by material in the current configuration an let Py; C M be a mesh region,

such that P = Py, at time ¢, as in Figure 3.17.

Figure 3.17. Mesh region Py, in the current configuration
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Recall from 1.2.1 that, according to the principle of mass conservation, the rate of change
of the mass of the particles which occupy the material region P at time t is equal to zero.

Starting with the spatial statement of conservation of mass in (1.64), note that

d dp d(dv)
— X, t)dv = dv + dt = )+ pdivv) dv
o 7Dp( ) i Nawr 7)(,0 pdivv)
W ————
rate of change of mass rate of change of mass
for material particles in P due to change in P

B dp Op .
= /<8t+(9 v+pd1vv>dv

- / [a —i—dlv(,ov)} dv

= / Paw  + / pv-nda = 0, (3.114)
oP
N
rate of Change of mass flux of mass
in fixed region P through boundary 0P

where use is made of (1.10), (1.52), and the divergence theorem. Next, proceed with the
derivation of an ALE statement of mass balance by defining the rate of change of the mass
contained in a mesh region P,; at time ¢ as

dm

- ﬁM(XM,t)dUM s (3115)
dt Jp,,

d
where —= denotes the mesh time derivative, that is, the time derivative which keeps the
mesh points fixed.
At this state, it is instructive to consider the different representations of a scalar function,

say f, using material, spatial, or mesh coordinates. Specifically, one may write
f=fXt = fulXt) = f(x,t) = fulxart) . (3.116)

Here, it is clear that fu;(xa7,t) = f(xas,t) (which means that there is no distinction between
the two spatial representations, hence, in principal, one may drop the subscript “M” from
)8 fu(Xar,t) # f(Xas,t) (which is tantamount to observing that at time ¢ the density

of the mesh point which was at X,; at time ¢, is not equal to that of the material point that

dy ; of.
occupied X/ at tp), and, also d—A:fM(XM,t) = % It is also clear from (3.116) that
duf _ Ofu _ 0fu  Ofu
= = . ) 3.11
dt ot ot oxa M (8.117)

6Tt is important to emphasize, in connection to the different representations of a function in (3.116), that

the mesh velocity vy, is nmot equal to the mesh-coordinate representation of the material velocity.
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The variables (x;/,t) used in ALE methods are often referred to as the mized variables.

Following the procedure above, one may also write

d dyp dy(d
oM or(xa, 8) duns = / MPM dosy + / ) m(dvar)
Pm , Py

dt Jp,, dt dt
Vv VvV
rate of change of mass rate of change of mass
for particles in P, because of change in Py,

d
= / (—MpM +pd1VVM) dvy
Pum dt

- OPM L BPM G+ pdivvay ) duas
/pM ( ot OxX M pawvy Y

= / {apM +d1v(va)} dvpyy
Pum ot

:/ ap—Mde—i—/ pvy -ndayy (3.118)

0
Clearly, since ghm above denotes the rate of change of p for fized x;; in the (necessarily)
fixed region Py, = P, it follows from (3.118) that

/ 8p—Mal U /(’3de = —/ pv-nda . (3.119)
Pur ap

Therefore, it is concluded from (3.118) and (3.119) that

dum

— ov(Xar, t) doy = / p(vy — V) -ndayy (3.120)
dt Jp,, OPu

which states that the rate of change of the mass contained in a mesh region equals to the
rate at which mass flows through the boundary of the region. Using the divergence theorem,
one may alternatively express (3.120) as

dnm

—_— ﬁM(XM,t) dUM = / div [p(VM — V)] d’UM . (3121)
dt Pum

Pwm
Upon combining (3.118), and (3.121), it follows that

/ (deM + pdiVVM) dvy = / pdiv(vay — v) doy + 9m (v —v) duy
Pus Pum

dt P aXM
(3.122)
hence, appealing to the localization theorem,
d dp
%)M +pdivy = &i—x (Var =) . (3.123)

For consistency, it merits attention to check the two following two cases:
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a) vy = v, where (3.123) reduces to the standard mass balance statement @+ divv =0
(a) N
d

since, in this case, = ,
( dt dt)

0
(b) var = 0, where (3.123) reduces to the standard mass balance statement i div(pv) =0

9 ot
(since, in this case, d—]\; = @)
If (vif —v)-n = 0 on dM, then setting Py; = M it is immediately concluded
from (3.120) that
d
2 pxart)dvy = 0, (3.124)
dt

that is, the total mass of the body is conserved automatically by the ALE method.

The local statements of mass balance (1.66) (in the spatial frame) and (3.123) (in the
mesh frame) jointly imply that
dupy  Opu

p = —pdivv =

The derivation of linear momentum balance in the mesh frame follows a similar procedure.

First, define the rate of change of linear momentum in a mesh region P,; at time t as

dum

— pvduy , (3.126)
dt Pum

and then evaluate the mesh time derivative to conclude that

— pvdvy = —(pv) de—l—/ pv———=
dt Pu Pm dt Pu dt

das
= / o (pv)de—i-/ pv div vy, doyy
P P

0 0
:/ {(%(pv)—i— (pv) v+ pvdivvy | doy
Pu

X
(pv) dvpy +/ v(pv ® Vi) doyy
Pm at

= (pv) dvy + / v(vy -n)dayy . (3.127)
Pm 8t 37’M

ME280B May 7, 2019



Arbitrary Lagrangian-Eulerian Methods 69

Setting Py = P and writing the linear momentum balance statement in Eulerian form as

d

7 pv dv =

pbdv+/tda
P

e

PV + pvdivv) dv

{%( v) + <8 v) v + pvdiv V‘| dv
= % / v(pv @ v)
= % / (3.128)

I
T T

As argued before for mass balance,

/ 8(pv)alvM = /g(pv)dv = /,obdv+/ tda—/ pv(v-n)da, (3.129)
Par Ot p Ot P op op

where use is also made of (3.128). It follows from (3.127), (3.129), and the divergence
theorem that
dum

— pvduy = / pbde—i-/ tdaM+/ pv [(var — V) - n] day,
dt Pnm Pm 0Py IOPp

:/ pbde—i-/ diVTde—i-/ div [pv @ (v — v)] duyy .
Pum Pum Pum

(3.130)
Expanding the left- and the right-hand sides of the above leads to
dM/ﬁw dyv . .
v+p + pvdivvy | dvy = pbduv, + div Tdvs
Pm dt dt Pum Pum
ap ov

+/ v {ﬂ (v —v) + pdiv(vy — V):| dvys +/ ovM (vir — v)dvoy  (3.131)

pr aXM pr aXM

or, upon imposing conservation of mass in the form (3.123),

/ deV dv = / pb dvy +/ div T dvy + OV (v —Vv)duy . (3.132)
Pu dt P P Pur aXM

Hence, the localization theorem, when applied to (3.132) results in the local form of linear

momentum balance

dyv . ov
p% - pb+d1vT+mp(vM—V) . (3.133)

As with mass conservation, it is instructive to consider the two special cases:
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(a) vy = v, where (3.133) reduces to the standard linear momentum balance statement

d d
pa = pb + div T (since, in this case, d_AZ = %),
b) vy = 0, where (3.133) reduces to 6_V + @ -v | = pb +divT (since, in this case,
P\at T ox P
dy 2)
dt ot

Angular momentum balance in the mesh frame yields the symmetry of the Cauchy stress,
as usual.
An alternative procedure for the derivation of the balance laws is possible without resort-

ing to any integral statements.” Indeed, start by recalling (3.117) and use (1.66) to conclude
that

dupa _ O O 00 O,
dt ot OXr ot 0xyy )
= —div(pv) + (,O;’i—]\; SV
= —pdivv—%-v—l—%-v]w
= —pdivv—%-(v—vM) : (3.134)
since p(Xar,t) = par (X, t) implies that % = 3(,;?;2\4 and also % = 88/)% Therefore, (3.134)

immediately implies (3.123). Linear momentum balance may be derived analogously.
To derive weak forms of the balance laws (3.123) and (3.133), 0 = op(xp,t) and € =
X (X, t) be a scalar and vector function at a point xp; of M at time t, respectively. The

weak form of (3.123) amounts to finding p € Z,,, such that

P -
/Ma[ditp+pdivv—ai—/])w-(VM—V) duvy = 0, (3.135)

for all o € Z);, where, in analogy to the definitions in (3.15),

Zy = {o: MxR—-R} | Zf{ = {c: MxR—-R|o>0}. (3.136)

7J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-Eulerian methods.
In E. Stein and R. De Borst and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, Volume 1:
Fundamentals, chapter 14. John Wiley, New York, 2004.
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Likewise, the weighted-residual form of the linear momentum balance statement in (3.133)
including the Neumann boundary conditions at a given time ¢ requires that the displace-

ment u € Uy (or velocity v € Vy) be such that

/ ¢ [de—v—pb—divT—a—V (vM—v)} dopr+ | € (6= day = 0, (3.137)

Fq]\l

for all & € Wy, where

Uy = {u:MoxR—>53| det (I+a§u) >0, u;(X,t) = wyonly,,
u(X,0) = 0, a(X,0) = vo} (3.138)
for solids,
Vi = {v:iMxR—=& |ukxt) = vonl, , v(x,0)=vo} (3.139)
for fluids, and
Wy = {s:MxR—>53 . &(x.t) = 0on Fui} . (3.140)

Note that T'y,, in (3.137) is the part of the exterior boundary OM which coincides with
the material boundary I'; at time ¢, as in Figure 3.18. Using integration by parts and the

qM

Figure 3.18. Neumann boundary conditions in ALE methods (R and M are shown apart from

each other for clarity)

divergence theorem, as well as the definition of W, in (3.140), it follows that

/ £-divTduy = & -tday — ﬁ-Tde. (3.141)
M

FqM M 8XM
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It follows from (3.137) and (3.141) that the weak form of linear momentum balance takes

the form

aXM

= / £ pbduy + {-fdaM—i-/ £- p[@v (VM—V):| dvy . (3.142)
M

Fql\l
There exist two general methodologies for the finite element approximation of (3.135)

and (3.142) in an incremental formulation:
(a) Solve (3.135) and (3.142) simultaneaously at every time step,

(b) Use an operator-split procedure, where a typical ALE time step comprises two sub-

steps:

(b.1) a purely Lagrangian step (where conservation of mass is automatic),

(b.2) if needed, a sub-step in which the mesh convects according to a specified mesh

motion x,, (hence, mass balance should be enforced).

In both methodologies, it is important to emphasize that convection of any history vari-
ables (attached, by definition, to material points) requires an additional algorithmic proce-
dure, since the mesh points are not material.

Starting with the first of the above methodologies, interpolate the relevant fields in an

ALE finite element with domain Q¢ at time ¢, as

uGan tun)lg. = W) = Y ONw = [N,

V(Xars tat1)|ge = Vi (Xnr) = ZNiernH = [NVl

dMV

W(Xz\m tnt1)

o = Via(xa) = Y N = [NV (3.143)

Vi (Xars tos1) [ge = Vignga (Xa) ZNerwz o = NIVl

NEN

n+1 XM ZN@E fn+1 - Ne][£n+1] )

€(XM7 tn+1) Q
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where Nf = Nf(xpr), @ =1,2,...,NEN. In addition,

NEM

Qe = pz-‘rl(XM) : ZN;p§n+l = [Ne][pn+1]7

j=1
NEM
o = Foalxa) = SONGE = [N[PL] . (3.144)
j=1
NEM
o (xn) = Y Noj., = [N[6%.]

j=1

p(XM7 tn-‘rl)

dyrp
dt

(XM7 tn+1>

o(Xars tnt1) |

where N ¢ = N £(xum), j =1,2,...NEM, are the element interpolation function for density and
its derivatives. These may, in general, be different from those used for the body motion and
its derivatives.

Substituting the interpolations in (3.143) and (3.144) to (3.135), when the latter is re-
stricted to the domain ¢ of an ALE element, it follows that

al” [ NN )+ (N ) (1A% )

— (1Pl (A ]”) N (5., ) — Wia]) fons = 0, (3.145)

where
Do) = [N Nip Npg oo Npp Nip Nig oo Nim Mo Nias| (3146)
and ) ) )
Nty - Rgy oo N
A = Ni, «++ Nfy, -+ Negyol - (3.147)
Nes - Ngy o N

Similarly, substituting the interpolations in (3.143) and (3.144) to (3.142), when the latter

is written for the domain €2° of an ALE element, it follows that
El” | [N (Nl ) (NB5l) o+ [ 1B < T > iy
= [N ) (Nl o = [ N g

- [ NN, - a]) (N0 dew| = 0. (3115)

Here,
Toal = | INGIFea]l NG NS | (3.149)
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and all derivatives in [B¢ ] and [I';, ] are taken with respect to x;.

Recalling that o, and éz 41 are arbitrary and after assemblying the element equations,
as usual, one recovers a system of coupled non-linear ordinary differential equations in time
with unknowns @, (or v,,41) and p, ;. Note that the mesh motion x,, is assumed to be
either prescribed or deduced (an extra task that will be discussed later in this section).

The two sets of equations can be integrated either by an implicit or an explicit method,
along the lines of the corresponding discussion in Section 3.4. In the former case, one may
use, e.g., the Newmark method at the cost of repeated solving of coupled algebraic equations.
In the latter case, one may use, e.q., the centered-difference method, which, for the domain
(tn, tns1], yields the equations

Pnii = Pnt PAL, (3.150)
and also

]- B B A ~ N 1 B
Vprlr = Vi + 5 <Vn + Vn+1) At, , Uy = U, +V,At, + §VnAti . (3.151)

For the centered-difference method to be free of equation-solving, it is necessary that the

two global associated with the element matrices
M) = / NI [N doy, ,  [M54] = / p[N€]T [N dvyy (3.152)

to be rendered diagonal. In addition, it is readily seen from (3.145) and (3.148) that an
explicit velocity estimate \72’21 is needed to estimate the ALE-related flux terms before the
velocity vector is updated using (3.151);.

Consider next the alternative operator-split algorithm, which consists of a purely La-
grangian step, followed, if needed, by an advective or Fulerian remapping sub-step, where
the nodal/elemental variables are mapped from the previous Lagrangian mesh to the new
ALE mesh, as dictated by the mesh motion. Most often in practice, there are multiple
Lagrangian steps before a single remapping sub-step. Also, the operator-split algorithm fa-
cilitates the automatic determination of the mesh motion based on the distortion encountered
in the Lagrangian mesh between two Eulerian remappings.

The advective remapping sub-step involves the following tasks:
(i) select the mesh regions to be remapped,
(ii) deduce a suitable mesh motion,

(ili) compute the advection of mass and linear momentum,
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(iv) compute the advection of history variables.

By way of background, it is instructive to distinguish advective remapping from adaptive
remeshing (or mesh rezoning). In the latter, a new mesh is generated at ¢ = t,,; not
necessarily with the same connectivities with the old mesh from ¢ = ¢,,, and all variables are
projected from the old mesh. In contrast, Eulerian remapping by the mesh motion x,, maps
the mesh from t = ¢,, to its new configuration at ¢ = t,,,1, and updates all relevant variables
to account for the transport of material. Hence, Eulerian remapping entails no change in
the element connectivities.

Deferring momentarily the discussion of tasks (i) and (ii) above, concentrate on the last
two tasks of Eulerian remapping. For task (iii), two distinct approaches may be adopted.
In the first approach, the ALE equations are solved in (¢,,t,.1] for a fixed motion x (as
computed from the Lagrangian step) and for prescribed mesh motion x,, to obtain updated
values for p,i1, Quy1, Va1, etc. Indeed, assume that the vectors ﬁflﬂ, ﬁﬁﬂ, \75“, etc.,
have been computed from the Lagrangian step. Also, assume that the mesh motion in

(tn,tns1] has been somehow determined. The nodal and elemental quantities will change

x (known)

Figure 3.19. Operator-split approach for ALE implementation (R, 1, resulting from Lagrangian
step and M, 1, resulting from Eulerian remapping are shown apart from each

other for clarity)

during the remapping sub-step because the nodes are moving independently of the fixed
body, as in Figure 3.19. The new nodal and elemental values can be computed separately for
conservation of mass and balance of linear momentum, using the ALE weak forms introduced

earlier, except that here the density and body motion are already known with reference to
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the Lagrangian mesh and need only be calculated on the remapped mesh. In particular, the

discrete counterpart of the mass conservation equation (3.135) becomes

d op
/ O‘|: C]pr—{—pdl vV —ﬁ (v —vE) | dvyy = 0, (3.153)

and can be integrated in (t,,t,41] with given v¥ and vy, for p,.;,. Likewise, one may

obtain v, by rewriting the discrete counterpart of (3.142) as

/5 dM—VdM-i-/ ¢ T dvyy

aXM

E'EdaM‘l’/Mﬁ‘pL {aa_{’

XM

= / € pFbduy + (Vi — V)] dvy, (3.154)
M

Lo
and integrating for v, . in (t,,t,41] with given p* and vj;. Note that the sets of equations
resulting from (3.153) and (3.154) are uncoupled.

Projection methods are addressing the same problem in a purely geometric fashion, which
is also applicable to the advection of history variables in task (iv) above. To introduce these

methods, consider a scalar field f which must be remapped at a given time t,,;. With
\< &

“” mesh “+” mesh

Figure 3.20. Projection method from one mesh (denoted "-") to another (denoted “+")

reference to Figure 3.20, let the interpolation of f on the initial mesh (denoted here as the

“” mesh) be

=) ek, (3.155)
I

where ¢, are global interporation functions. After remapping, the same function is interpo-

lated on the new mesh (denoted here as the “+” mesh) as

= > i f, (3.156)
I
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where pf are the global interpolation functions on the new mesh. Assuming that f~ is
given, the goal of a projection method is to determine the nodal values f;, such that the
error between f~ and f™ be minimized in some way. This is generally accomplished by

choosing f;" such that
/ Y(fr = f)doy = 0. (3.157)
M

Here, ¢ = Y ;as¢r, where ¢; are linearly independent weighting functions and «; are
arbitrary parameters. The projection condition (3.157) leads to the system of linear algebraic

equations

/M Vi(fT = f7)don = /M Y1 [; e f7 —;%]fj doyy = 0. (3.158)

for all 7. This system can be solved for f; assuming non-singularity of the matrix with
components / Yrotduy. A typical choice for this projection is ¢y = ¢}, which leads to a
classical least—gauares problem.

Attention is now turned to tasks (i) and (ii), which pertain to the definition of a suitable
mesh motion. Preliminary to any developments, it is essential to stress that such for such
a motion to be practical, it has to be defined in an automated manner as the ALE solution
evolves. Start by considering a popular heuristic procedure employed for meshes with 4-
node quadrilateral elements.® The idea here is to maintain a mesh which resembles as

much as possible a uniform mesh, see Figure 3.21. With reference to Figure 3.21, consider a

I A
/b

ideal mesh patch actual mesh patch

Figure 3.21. Volumetric and shear distortion indicators for a patch of 4-node quadrilaterals

8D.J. Benson. An efficient, accurate, simple ALE method for nonlinear finite element programs. Comp.
Meth. Appl. Mech. Engr., 72:305-350, (1989).
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typical node in a mesh of 4-node quadrilaterals, and define a scalar measure R,, of volumetric
distortion around this node as _
2 (A

max (Aj) ’

I=1-4

R, = (3.159)

where, generally, 0 < R, < 1 and R, = 1 for the uniform mesh. A scalar measure R, is

shear distortion is likewise defined as
R, = 11:1111514(sm 0;) (3.160)

where, generally, 0 < R; < 1 and Ry = 1 for a uniform mesh. Note that R, detects both
acute and obtuse angles. Subsequently, define an empirical non-negative function f(R,, Rs),
such that f(1,1) = 0 (optimal value), and a node I is “Hagged” to move when f > f, where
f > 01is a user-specified constant.

The last outstanding task is to decuce a mesh motion. The simplest possible scheme
would place node [ in the coordinate-wise arithmetic mean of the locations of its immediately
neighboring nodes. A more sophisticated (and better performing) scheme is based on the so-

called equipotential relaxation originally propounded by A.M. Winslow for triangular meshes

7/ 7/ 7/ / 7/
/ )\ / \ / )\ / /
v
/ / / / / /
/ / / / / /
/ / / /\/ / / /
/ / / 4 / /
/ / / 4 / /
7/ 7/ \ 7/ \( 4 \ 7/ \ 7/
7 ’ 7 7 4 7 7
7 7 7 ¢ % %
7/
n= const n= const
natural domain (§,7) physical domain (x,y)

Figure 3.22. Smooth map between equilateral triangles in the natural space (£,m) and general
triangles in the physical space (x,y)

9 Winslow argued that, since any triagular element domain can be

used in hydrocodes.
mapped uniquely into a regular equilateral triangle (common for all elements of a mesh) in
the space of natural coordinates (£, n), a high-quality mesh can be created by the intersections

of equally-spaced lines of “potential” & = constant, = constant, together with a third set

9A.M. Winslow. Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh.
J. Comp. Physics, 2:149-172, (1967).
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of lines drawn through the intersection points, as in Figure 3.22. The Laplace-Poisson
equation (being an archetypical example of an elliptic partial differential equation) produces
a smooth set of equipotential lines, provided the boundary conditions and force are smooth.
Therefore, generating a high-quality mesh (or, improving the quality of an existing mesh) is
tantamount to solving the Laplace-Poisson equation for the natural coordinates £ and 7 in
the physical domain and defining element edges at equipotential lines of £ and 7. The same
logic applies for quadrilateral meshes mapped from square elements in the natural domain,

see Figure 3.23. Equipotential relaxation has been shown to produce excellent meshes for

& = const & = const

n = const 7 = const
natural domain (&,7) physical domain (z,y)

Figure 3.23. Smooth map between squares in the natural space (£,7) and general quadrilaterals

in the physical space (x,y)

relatively complex two-dimensional domains. !’

To derive the equations used for equipotential relaxation, start by considering the general

two-dimensional mapping from the natural to the physical domain in the form

v =¢&n) .y =79&n). (3.161)

Since the mapping is assumed to be invertible, one may also write

where the individual functions Z, y, &, 1 are to be determined, see Figure 3.24. The two

Laplace-Poisson problems are now defined by

V¢ =0, V=0, (3.163)

10J.F. Thompson, F.C. Thames, and C.W. Mastin. Automatic numerical generation of body-fitted curvi-
linear coordinate system for fields containing any number of arbitrary two-dimensional bodies, J. Comput.
Phys., 15:299-319 (1974).
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where V2 = 88—;2 + 38—;2. At this stage, it is crucial to observe that the boundary conditions
for the equations in (3.163) are given in the physical space (put differently, it is the domain
in the physical space that is known and that needs meshing). Therefore, since boundary
conditions are enforced on the dependent variable of a differential equation, it is necessary
that (3.163) be expressed inversely, that is, to interchange the dependent and independent

variables. This is possible since T, iy are invertible.

P 3 A 3
Ty
& = _
&7
y
0 2 ! 2
T

Figure 3.24. Smooth map from a square in the natural space (£,n) and a general quadrilateral

domain in the physical space (x,y)

To this end, use the chain rule to write for any differentiable function f = f(x,y),

of _ ofor 01 0p
o0& O0x0¢ Oy O
of  ofor  ofoy (3.164)

oy dxdn  Oyon
[f,g] _ [T,s ?,s] [f] _ (3.165)
f,n Ty y,n f,y

[f,z] _ llyn _yf] [f’§] : (3.166)
f,y J —Ty, Tg fﬂ]

where j = Ty, — T,y and j # 0 owing to the invertibility of T,7. Setting f = & and

or, in matrix form,

Therefore,

f =m, it follows from the above equation that

= 1 - 1

k) j 717 7y j ,r] ( )
and
n, = —1 = ——1 (3 168)
x -y y 1 ~ L. .
) j 76 7y ] é
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Repeating this process to calculate expressions for Em, Z’yy, 7 4oy and 7, and substituting

these in (3.163) results in the two coupled non-linear partial differential equations

arge — 2T en+ T = 0, ayee —2BYen + 7Y = 0, (3.169)
where
a=al+yy, . B = wer,tyyy o v = vty (3.170)

and the overbars have been dropped for brevity. With reference to Figure 3.24, the boundary

conditions take the form

r = T(§,n) on U'—4" . y =7(&,n on 1'-4",
z = T(,n) on 22-3 , y =7mn) on 2'-3, (3.171)
r = Z(&m) on 1'—2 | y =7g&m) on 1'—2",
r =T(&mn) on -4 | y=75&mn) on 3-—4,

where 7, 7 are assumed to be known on the boundary of the physical domain. The solutions
of the equations (3.169) provide directly the placements of points (x,y) at the intersection
of equipotential curves £ = constant and 7 = constant.

Note that the differential equations (3.169) are more complex than the original Laplacians
in (3.163). However, the domain and boundary conditions of (3.169) are considerably simpler
than those of the original Laplacians.

In practice, equations (3.169) are solved approximately by a finite difference method using
an iterative technique. For example, consider the case of 3-node triangles with equally-spaced

equipotential lines of unit spacing in the natural domain, as in Figure 3.25. Here, it is easy to

& =const., n,"

Figure 3.25. Finite difference stencil for linear triangles with unit spacing in the natural domain

derive the placement (zg,y) of the center node in terms of the placement of the neighboring
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nodes according to

1
95,£|o =5 (1 + 226 + 25) — (T2 + 223 + 24)]
o1
Taly = 8 (22 + 221 + x6) — (T3 + 224 + x5)]
Teely = w6 —2m0 + 23, (3.172)
Tomly = 1 — 2w + 24,

o1
Tenly = B} (1 + w6 + 23 + 24) — (22 + 75 + 220)] -

with corresponding equations for ye, ¥, Yee, Y, and ye,. To deduce, say, (3.172);, use
the divergence theorem to write for the shaded region (25 of Figure 3.25

/xédvg :/ xng dag . (3.173)
Qo 090

Recalling that all triangles are equilateral with unit side (hence, the area of each triangle is

equal to 1/4/3), the above equation implies that, by finite difference approximation,

1 . 375+3762 136+l’12 $2+$32 $3+.T42
6——xe| = — + 10— = =40, (3174
AT T2 BT v > iz oy G

which reduces to (3.172);. An even simpler formula for x|, may be obtained by considering

the divergence theorem only along the &-axis, in which case

0 = %(:Ce —x3) - (3.175)

x’g

Similar derivations apply to the remaining formulae in (3.172).

¢ =const., n 7
3 2 1
4 0
&, n =const.
5 6 7

Figure 3.26. Finite difference stencil for bilinear quadrilaterals with unit spacing in the natural

domain
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For the case of bilinear quadrilateral elements, as in Figure 3.26, use of the divergence

theorem for the shared region 2pox yields

/xédvg = / xne dag (3.176)
Qo o9

or
. Trtxs s+ 1 T3+ X4 Ty + Ts
daely = —5—+ =5 +0+0-—F—-—F5—-0-0, (3.177)
hence,
o1
elo = gllor+ 25+ 21) = (w3 + 204 + 75)] (3.178)

with analogously derived formulae for the remaining derivatives. Again, an even simpler

approximation results from one-dimensional finite differencing, so that

o1
rely = 3o~
1
Talg = 5(@2 = 26) ,
Teelg = w8 —2x0+ 24, (3.179)
Tamly = T2 — 230 + T
Tenly = Z(x1+$5—96’7—9€3),

with corresponding formulae for the derivatives of y.

Upon substituting either (3.172) or (3.179) into the equations in (3.169), one obtains a
non-linear algebraic system of two equations for (g, o). In practical computations, Poisson
smoothing is performed using a Gauss-Seidel-like iterative procedure, where the placement
of the nodes is updated successively from one node to the next until all nodes are exhausted.
Several rounds of Poisson smoothing are typically performed until convergence of the node
placements in an appropriate measure.

A variational interpretation of Poisson smoothing is possible and provides useful in-
sights.!!  Indeed, it can be easily shown that the solution of (3.163) is attained by the

minimization of the functional

I, = /(|V§|2+|Vn|2) dv . (3.180)
Q

113 U. Brackbill and J.S. Saltzman. Adaptive zoning for singular problems in two dimensions. J. Comp.
Physics, 46:342-368, (1982).
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In this sense, the functional I, measures the variation in mesh spacing along equipotential
curves. Within the variational setting, it is now possible to introduce additional functionals

I, and I, as
I, = /(VE-W)2 v -, I, = /wjdV, (3.181)
Q Q

where w is a given positive function. These measure orthogonality and (weighted) volume
variation, respectively. The minimization of a combined functional of the form I = I, +
c1l,+ col,, where ¢, co > 0, may be used to simultaneously control mesh quality in all three
measures. In addition, mesh grading (e.g., when one needs to refine the mesh in a specified

area) may be introduced by solving
VQS - fl ; v277 - f2 ) (3182)

where the sources fi, fo are appropriately chosen to effect mesh refinemenet, as needed.

3.7 Eulerian Methods

In computational mechanics, Eulerian finite element methods are used almost exclusively
in applications of fluid dynamics. The weak forms of mass and linear momentum balance
can be readily derived from their ALE counterparts (3.135) and (3.142) by setting the mesh
velocity vy, to zero and reinterpreting all mesh time derivatives as partial derivatives with

respect to time at a fixed point in space. This leads to the statements

dp Op . B
/R"(at +8X-v+pdlvv) dv = 0, (3.183)
and
ov OV € B _
Rﬁp(E_Fa—XV) dU+/R&TdU = /Rspde—F qu-tda s (3184)

respectively, with p = p(x,t) and v = v(x, t), and with admissible spaces and weights defined
accordingly.

The interpolation of velocity and density fields follows (3.143) and (3.144), where Nf = Nf(x)
are the element interpolation functions.

A specific application of Eulerian finite elements for incompressible Newtonian fluids is

presented in Section 5.1.

ME280B May 7, 2019



Chapter 4

Solution of Non-linear Field Equations

4.1 Generalities

Recall the semi-discrete form of linear momentum balance (3.61) obtained from a Lagrangian
finite element method or a corresponding form resulting from ALE or Eulerian methods.
With the use of an implicit time integrator, the above system of non-linear ordinary dif-
ferential equations in time gives rise to a system of non-linear algebraic equations for 1,4
(typically, in solids) or 0,,,1 (typically, in fluids). In ALE or Eulerian methods, an additional
system of equations is obtained by imposing conservation of mass and p, ., is added to the
list of unknowns to be determined.

By way of background, consider a system of non-linear algebraic equations expressed in

column vector form as

[f(x)] = = [0], (4.1)

fn(x)

where x is a vector in RY (not a position vector!) and f : Q@ € RY — RY is a non-linear

mapping, in the sense that given any real «, § and any points x;, X5 in €2, then

flax; + fx2) # of(x1) + Bg(x2a) . (4.2)

In the interest of simplicity, no brackets are included henceforth to denote general vector

equations, therefore (4.1) would be written simply as
f(x) = 0. (4.3)
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86 Solution of Non-linear Field Equations

Next, consider a continuous mapping g : & € RY — R¥, such that x — g(x). A point
x* € (1 is called a fized point of g if

x" = g(x"). (4.4)

The solution of the system of non-linear algebraic equations in (4.3) can be trivially

reduced to a problem of finding the fixed points of a function, since (4.3) is equivalent to
x = x—cf(x) = gx), (4.5)

for any constant ¢ # 0. Here, recall that the function g is continuous at xg € 2 if, given
any € > 0, there exists a § = §(¢) > 0 such that

lg(x) —g(xo)| <e, (4.6)

for all x € B(xp,d) = {x € Q| ||lx — x¢|| < ¢}, where, geometrically, B(xg,d) is an N-

dimensional ball of radius ¢ centered at xg, as in Figure 4.3.

Figure 4.1. Ball of radius § centered at x,

Let g be differentiable and its domain €2 be a conver subset of RY, which means that for

any x, y in €, the point (1 —w)x 4+ wy is also in Q2 if 0 < w < 1, as in Figure 4.2. One may

convex non-convex

Figure 4.2. Convex and non-convex sets

now invoke the mean-value theorem in RY to write for any points x, y in 2,

lg(x) —g)Il < sup [I(@)]l[x -yl (4.7)

zE[x,y]
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where z is on the line segment connecting x and y, that is, z = x+w(y —x),0 <w < 1, and

Jij(x) = —5-
J

(4.8)

is the Jacobian matrix of g.
Note that any vector norm can be used in the mean-value theorem, such as, for example,

the classical Euclidean 2-norm, defined as
1
xll2 = (27 +a3+---+ay)? . (4.9)

Also, recall that all norms in RY are equivalent, in the sense that, given any two such norms

| - Ila, Il - ||5, there exist positive scalar ¢; and ¢z, such that for any x € €,
alxlla < s < callxla - (4.10)
Lastly, the natural matrix norm associated with a given vector norm is defined for any given

matrix A (viewed as a linear mapping of a vector x € RY to another vector Ax € RY) as

Ax
1A] = sup X jax) (4.11)
llx[170 x| lIx||=1

It is noteworthy that the classical equality form of the mean-value theorem in R, that is,

l9(x) —g(y)| = gz —yl, (4.12)

for at least one point z € [x,y], does not generalize to RY.
Returning to (4.7), it is observed that if there is a positive constant A, such that ||J(x)|| <
A < 1 for all x € €2, then clearly

lg(x) =gl < Allx—yl << lx-yl. (4.13)

Under the above condition, the operator g is termed contractive (or a contraction), in the
sense that its application to x — y strictly reduces the distance between the two points
measured by the vector norm. The following theorem provides a useful connection between

contractions and the existence of a solution to (4.3).

Theorem 4.1. (Contraction mapping) Let g map a closed Q C RN onto itself, and be

contractive on ) with constant A. It follows that:

(a) there exists a unique fized point x* in Q, and

May 7, 2019 MEZ280B



88 Solution of Non-linear Field Equations

(b) the fized point x* can be determined by a fixed-point iteration, that is from
xFH) = g(x®y k=012, (4.14)
starting from any point x© in Q.
Proof. Start with part (b) and note that, in view of (4.13);,

x5 = x B = [lg(x®) - gx )| < AxH - xD)

< N = X0 = W) - xO

(4.15)
Then, for any positive integers m,n, with m > n, (4.15) implies that
< Hx(m) _ X(m—l)H + Hx(m—l) _ X(m—2)H R HX(nH) _ X(n)H
< (/\m—l + )\m—? 4ot /\n)”x(l) . X(O)H
_ )\n(Amfnfl + )\mfnfl I 1>HX(1) . X(O)H
1= A"
= N [x —xO) < m”xm —xO. (4.16)
Hence,
lim Hx(m) —x(”)H < lim Hx(l) —X(O)H =0. (4.17)

m,n—00 n—oo 1 — \
Thus, x™ is a Cauchy sequence and since R™ is complete and € is closed, it follows that
lim,, o x™ = x* € Q.

Returning to part (a), write for the point x* obtained above

Ix* — g(x™) + g(x™) — g(x*)]|
< x"—gx™)| + [lg(x™) — g(x")||
< |x* = X("H)H + )\HX(") - x| . (4.18)

X" —g(x")l

Taking the limit as n goes to infinity of both sides of (4.18),

lim [|x* —g(x*)|| < lim [|x* — x|+ X lim |x™ —x*|| = 0, (4.19)
n—o00 n—00 n—0o0

which implies that x* is a fixed point.
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To show that x* is unique, assume, by contradiction, that there exists a second fixed
point y* € ), such that y* # x*. Then,

Ix* =yl = llex") =gy < Alx" =yl < [x" =¥ (4.20)
which is a contradiction, therefore x* = y*. |

If there exists no guarantee that ¢ maps the closed set €2 onto itself, the following theorem
is useful.

Theorem 4.2. Let g : Q — RY be contractive on Q, and assume that x© € Q is such that

A

= {x 1 x-sOl = Pl -xOlf o, aa

where X is the contraction constant. Then, the fived-point iteration x*+1) = g(x*)) converges

to the unique fized point x* € S.
Proof. For any x € S,
lg(x) —gxM) < Mx=x2| = AMx—gx?) +gx") x|

Allx = g(x )] + llg(x®) =]

IN

IA

A2 A
< 0y _ O — 0)y _ <(0) '
< 75 ) - xO1 = Ee®) -x (22

therefore g(x) € S, thus g maps the closed set S onto itself. Thus, the contraction mapping

Q Q

Figure 4.3. Contraction mapping in &

theorem is applicable and yields the desired result. [ |

The preceding analysis can be carried out in the broader framework of Banach spaces
(that is, complete normed linear spaces). However, this is not necessary here since the sub-
sequent development pertains strictly to finite-dimensional spaces (which are, by necessity,

complete).
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4.2 The Newton-Raphson Method and its Variants

The Newton-Raphson method is one of the most widely used iterative methods for solving
non-linear algebraic equations. Its origins may be traced at least as far back as the first
century AD work of Heron of Alexandria, who was clearly aware of the iterative formula
gkt = % (:c(”) + ;ALM) for estimating the square root of a positive real a starting from any
positive guess z(®. It is now widely accepted that the classical Newton-Raphson formula
is due to Raphson, although Newton had earlier employed a related, albeit less general,
formula.

Recalling (2.13), the idea of the Newton-Raphson method is to approximate f(x) with
its linear part about a point x, € R, that is,

f(x) = f(x0) +J(x0)(x —%0) + O (||x —x0[|*) = 0. (4.23)

[ J/ 9}

LIf5x—%0]xq ignore

In the above equation, J(xg) is the (Fréchet or Gateaux) derivative of f at x, with components

Jii(x0) = %;0) , (4.24)

and, similarly, J(xo)(x — X¢) is the (Fréchet or Gateaux) differential at x, in the direction

X — Xp. Then, one may use the iterative formula

LB () [J(X(k))}_lf(x(k)) (4.25)

k) starting with x(©) as the initial

to determine, if possible, the solution x* = limj_,. X
guess, and assuming that det [J(x*))] # 0 for all iterates k. Equation (4.25) is the classical

Newton-Raphson formula, see Figure 4.4 for a geometric interpretation.

f

' fx(k) -0
@) = IS )kl
k) — p(k+1)

Figure 4.4. One-dimensional geometric interpretation of the Newton-Raphson method

'For a detailed historical account, see F. Cajori, Historical Note on the Newton-Raphson Method of
Approximation, Amer. Math. Monthly, 18:29-32, (1911).
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The three major drawbacks of the Newton-Raphson method are that (a) the deriva-
tive J(x) must be computed explicitly, which is occasionally difficult to do analytically
(although either automatic or symbolic differentiation software may be used to free the pro-
grammer from this task), (b) the condition det [J(x*)] # 0 for all k = 0,1,2, - - - is essential

and its violation (or near-violation) results in failure of the method, see Figure 4.5, and (c)

f

T

Figure 4.5. Failure of the Newton-Raphson method due to singular J(z(*))

convergence is not guaranteed unless the initial guess x(© is sufficiently close to the solution

(a point that will be expounded upon later in this section), see Figure 4.6.

f f
NG 24" /mw)
| g T | T
fla) o~ fla)y ="
flip-flop divergence

Figure 4.6. Failure of the Newton-Raphson method due to the large distance of z'*) from the

solution x*

The Newton-Raphson method can be interpreted as a fixed-point iteration (4.7), where
g(x) = x— [I(x)] () (4.26)

As an alternative to the Newton-Raphson method, one may define the so-called modified

Newton method, where

g(x) = x— [JxO)] " f(x), (4.27)

so that now
xD = x® _ (3O T Ex®) k= 0,1,2,--- (4.28)
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Figure 4.7. One-dimensional geometric interpretation of the modified Newton-Raphson method

and J (X(O)) needs to be factorized only once, see Figure 4.7.

The generalized Newton method, where
g(x) = x— [A()] " f(x) , (4.29)

where A(x) : Q+ RY is an invertible matrix which is typically an approximation to J(x).
The generalized Newton method encompasses a wide class of iterative methods for the so-
lution of (4.3), including the Newton-Raphson, the modified Newton method, as well as all
approximations to Newton-Raphson resulting from numerical differentiation of f.

The preceding contraction mapping theorem may be used to study the convergence of
the Newton-Raphson method. Indeed, in light of (4.26), if the resulting g(x) maps some
closed region (2 to itself and is contractive, then the Newton-Raphson method convergences
to the unique solution x* € () starting from any point x(¥) € Q. A sharper, and, therefore,

more interesting result, is as follows:?

Theorem 4.3. Let a non-linear operator £ : @ C RY — RY be continuously differentiable,
and assume that there exists a point x* € ), such that £f(x*) = 0 and det J(x*) # 0.
Then, there is a p > 0 such that for all initial guesses x*) € B(x*; p), the Newton-Raphson

iteration (4.25) is well-defined and converges to x*.
Proof. Since det J(x*) # 0, one may find an M > 0, such that

I < M (4.30)
In addition, since J(x) is continuous, then, by the inverse function theorem, so is [J(x*)] ™"

in a neighborhood of x*. Then, there is a > 0, such that

I =B < M= e (4.31)

~
>0

2See, e.g., Section 8.1.10 in J.M. Ortega, Numerical Analysis: a Second Course, STAM, Philadelphia,
1990.
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for all x € B(x*;9). This, in turn, implies that

I < I+ M~ 3] = M, (4.32)

that is, [J(x)] " is bounded in the ball B(x*;6) = {x € Q | ||x — x*|| < §} of radius § centered
at x*. Then, for any x*) € B(x*;§) it is concluded that

k1) g =y (k) _ [J(X(k))] -1 f(x®) — x*
= [IE®)] T {IEW)x® - x] - f(x®)} . (4.33)

X(

Since J(x) is continuous in B(x*;d), one may invoke the fundamental theorem of calculus®

to conclude that
f(x®)) = f(x*) + {/OIJ (x* + w(x® — x*)) dw} (x® — x*)
= {/OIJ (x* + w(x® — x")) dw] (x®) — x*) . (4.34)

Substituting the above equation in (4.33) yields
1
xFHD) _x* = [J(x(k))}l/ [J(x(k)) - J(x + w(x® — x*))] do(x®™ —x*) . (4.35)
0
Taking norms of both sides of (4.35) and using standard norm properties, it follows that

I = < ] [ 160 3 o e =) 1
(4.36)
Now, since J(x) is continuous in B(x*;d), there exists a p, 0 < p < 4, such that, for
any x® € B(x*;p) and all w, 0 < w < 1,
1
1J(x®) =T (x* + w(x® —x7)) || < R (4.37)
as in Figure 4.8. Indeed, taking advantage of the aforementioned continuity of J(x), one

may always find a p, 0 < p <9, such that

1T(x®) —J (x* + w(x® — x)) || = [T(x®) = J(x*) + I(x*) =T (x* + w(x® — x) ||
< IED) = IE)+ I = I (" +wEx" —x) |
1 1 1
< = . 4.38
- 4AM * AM 2M ( )
3The one-dimensional version of the fundamental theorem of calculus, f ( ) = )+ fba 52 dz readily
generalizes in R to f(b) fl Cff(f_:':}(]? :)))) d(a“;ib ) — [fo (a+w(b—a)) dw} (b —a).
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),

Figure 4.8. Balls B(x*; p) and B(x*;¢) around the solution x*

Taking advantage of (4.30) and (4.37), it follows from (4.36) that

1
x40 ) < Mo x® =) = Sl - (1.39)

Note that clearly x**1) € B(x*; p) and a standard argument of induction leads to
lim ||x**D —x*|| = 0, (4.40)
k—ro0

therefore limy,_, o x*t1) = x*. [ |

An additional condition may be included with the original assumptions of the preceding

theorem, whereby it is assumed that there exists a constant A > 0 such that
[J(x) = I < Allx=yl, (4.41)

for all x,y € B(x*;p). Under this condition, J is called Lipschitz continuous in B(x*;p)
with Lipschitz constant A\. Under the additional assumption of Lipschitz continuity for J,

one may start again (4.36) and use (4.30) to conclude that
1
I — x| < )] { 169 =3 (x4l ) ||dw} Ix® — x|
0
1
<M { [ ra - - x*||dw} Ix® — x|
0

271

1

= M [w—%] Ix® = x| = JAM[x® - x| (4.42)
0

This implies that the Newton-Raphson method converges quadratically in the sense that

k) x|

I Lo
W S 5/\M = constant . (443)
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The scalar p > 0 is referred to as the radius of attraction for the Newton-Raphson
method. Clearly, convergence to x* is not guaranteed when starting from x(© ¢ B(x*; p).
This, in effect, limits the step-size when using the Newton-Raphson method. The radius
of attraction depends on the spatial variation of J around the solution x*, as depicted in

Figure 4.9. Note that, contrary to statements in some texts, quadratic convergence does

f f

z x €T x

“large” p “small” p

Figure 4.9. Functions with different radii of attractions for the Newton-Raphson method

not require differentiability of J(x),x € B(x*; p). Indeed, Lipschitz continuity is a stronger
condition than continuity but weaker than differentiability.

The above theorem is local in nature, in the sense that it assumes that the solution x*
exists, and subsequently asserts that there exists a neighborhood B(x*;p) around x*, such
that starting with any point x(© in it, the Newton-Raphson sequence will converge to x*.
This theorem does not allow for any computable error estimate for the quantity ||x*) —x*||.
A semi-local result (that is, one for in which the existence of a solution x* is not assumed

at the outset) is the celebrated Newton-Kantorovich theorem:*

Theorem 4.4. Let a non-linear operator £ : RY — RN be differentiable in a convexw set
Q c RY and its derivative J be Lipschitz continuous with constant \ in Q. Suppose that
there is a point x©) € Q, such that

I < O] O < (4.44)
and .
a = M < 3" (4.45)
Also, assume that B(x?); p,) C Q where
1 1
pe = 117 1—(1—2a)] , (4.46)

4See p. 421 in J.M. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.
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see Figure 4.10.

Q

Figure 4.10. Convergence under the Newton-Kantorovich conditions

Then, the Newton-Raphson iteration is well-defined and converges to the unique solu-

tion x* of f(x) = 0 in B(xV): p,). In addition, an error estimate is obtained in the form

(20)”

* _ x(k)

(4.47)

Even sharper error estimates can be obtained for ||x* — x®|| by further assuming that

the second derivative of f exists everywhere and is bounded.?

4.3 The Newton-Raphson Method in Non-linear Finite

Elements

The Newton-Raphson method enjoys wide use in non-linear computational mechanics. To
demonstrate its application, consider first the system of ordinary differential equations (3.61)
emanating from the spatial discretization of a Lagrangian finite element method and the cor-
responding algebraic system (3.72) resulting from the application of discrete time integrator.

The latter may be put in the form

. 1 . R . . 1 1-26.
f(t,1) = WMunH +R(t,11) — M {(un + V”Atn)ﬁAtQ + 55 a,;—F, 1 =0
(4.48)
(0)

To find 1,41 using the Newton-Raphson method, start with the initial guess 0, ; = U,,

that is, the displacement field of the converged solution at ¢ = ¢,,, and, recalling (4.23), write

~ (k+1 . ~ (k ~ (k ~ (k+1 ~ (k
0 — f(al) = f(@l,) + D) (al —al) | (4.49)

5See p. 708 in L.V. Kantorovich and G.P.Akilov, Functional Analysis, Pergamon Press, New York, 1982.
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(k) a(k+1) (k)
where Au,}, = a,.}’ — 0,

from iteration (k) to iteration (k + 1). Then,

is the (yet unknown) increment of the displacement vector

-1
) = al, - [praly] f@ly ok =012, (4.50)

Clearly, the term Df (ﬁfﬁzl) (ﬁgfll) — ﬁ;’i&l) is the differential (Fréchet or Gateaux) of the
vector f at ﬁfﬁl in the direction Aﬁff_ﬁl. In order for the Newton-Raphson method to be
employed, the derivative Df (ﬁgﬁl) must be determined explicitly. This can be done at the
level of the full post-assembly algebraic system, or more conveniently, at the element level
using the original weak forms of the balance laws. To explore the latter option, recall the
discrete linear momentum balance equations (3.59) derived from (3.42), as restricted to the

element e with domain €2, that is,

a€n—|-1

o ox PrndV
0

&1 P01 dV +
Q3

= €n+1 ’ pObn—I—l dv + / £n+1 . I_)n—H dA + / £n+1 *Pn+1 dA . (451)
9NN g,

Q5 O95\I'qy
Next, proceed with obtaining the differential in the direction Au,; of each of the terms in

the above weak form, except for the last one which will not appear in the global balance

statements. For the acceleration term, one may write

d .
D £n+1 “ podn1 dV (Un+1, A11n+1) = |7 £n+1 ‘Po(un+1 + wAun+1) av
o5 dw Jog o
= sn—i-l : pOAﬁn—l-l dv . (452)
Q5

Assuming that the body forces are known and independent of u, and also that the prescribed

tractions are deformation-independent (that is, they are dead loads), then clearly

D [ €11 Pobr1dV —l—/ €11 Pnr1dA (Wpg1, Auyyy) = 0. (4.53)
o o

Q5 Mg,

An additional important assumption made above is that I'y, is itself independent of u, that
is, the characterization of traction boundaries does not depend on the solution.

Alternatively, it is possible to have deformation-dependent tractions. For example, a fol-
lower load of the form (t,,41 = —pn, 1) may be imposed on Iy, so that, upon recalling (1.12)
and (1.75),

Pnt1 = _ﬁJnJrlF;le . (454)
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Nn+1 A P |

Ny,

dA
da

Figure 4.11. Pressure-type follower traction

where p is a constant pressure, as in Figure 4.11. These traction loads are clearly subject

to non-trivial linearization.
Similarly, it is possible to model body forces which are derived from a potential, such as
gravitational forces which are changing with position, as in Figure 4.12. These also lead to
///’b——;—‘\\\\

/

Figure 4.12. Body force in a gravitational field

a non-trivial linearization.
Generally, the principal concern in formulating the Newton-Raphson iteration in finite
element methods is to obtain the differential of the stress-divergence term. For the case of

solids, write

€, d 9€,
D /5;8 a—XH . Pn+1 dV (un_l’_l, Aun+1) — [@ /(;8 8—XH * P (un+1 + WAun_l’_l) dV B
0§, d
= /5;8 a—XH . [%P (un+1 + WAun+1):| . dV

o,
_ /Q =R DP (W Au) dV L (455)

0
If the stress depends only on the deformation gradient (as in the case of elastic materials
discussed in Chapter 5), then
aPn+1
8Fn+1

DP (un+1, Aun+1) - DP (FTL+17 AFn+1) - AFn_;’_]_ 5 (456)
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where OA
o Up4+1
AF, .1 = X (4.57)
Thus
€, 11 _ 0,1 0P, 0Au,
D [/QS a—X ' PTL+1 av (un—i-hAun—H) - /QS 0X ' aFn+1 X av. (458>

For materials which exhibit rate-dependence, e.g., when P = P(F,F), the differential

DP (u,41, Au,y1) does not capture the rate-dependence and needs to be augmented to
DP(un_i_l; Vn+1, Aun+1; Avn+1) . (459)

Upon time discretization, this augmented differential is not necessary because the rate quan-
tities can be expressed in terms of the primary variable u through the use of a discrete time

integrator.

Example 4.3.1: By way of example, consider the simple one-dimensional Kelvin-Voigt solid (spring-
dashpot in parallel), as in Figure 4.13. Here,

o = Ee+ne, (4.60)

where ¢ is the infinitesimal strain, o is the uniaxial stress, E is the Young's modulus, and 7 is the
viscosity coefficient. Clearly, at ¢t = 41,

Ont1 = FEent1 +méns1, (4.61)

therefore
DU(€n+1; én+1, A€n+1; Aén+1) = EAEnJrl + ’I]Aén+1 . (4.62)

Upon integrating in time using the backward Euler method, it follows that

E

Figure 4.13. The Kelvin-Voigt solid

En+1 = En + Atnén_l,_l s (463)
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therefore (4.61) becomes

. € —€
Ons1 = Eepi +n% . (4.64)
n
This, in turn, implies that the differential of the stress is
DO'(En+1, A5n+1) = <E + An) A€n+1 s (465)
tn

hence the algorithmic tangent modulus equals £ + <.

It is important to recognize that in determining the differential of P in an algorith-
mic framework, one needs to first account for all approximations to rate-type quantities on
which P depends. In solid mechanics problems, this leads to a functional expression of the
form

P = P(Fopr, o lnoe) (4.66)

where the notation --- |, is used to denote generic functional dependency on quantities at
t = t,. Sssuming sufficient smoothness of P, this leads to an algorithmically consistent
differentiation of P as

~ oP
DP(FnJrl, AFn+1) - (a_F> AFn+1 . (467)
n+1

oP
The quantity (8_F> is referred to as the algorithmic tangent modulus at t = t,,11.
n+1

Using the above results, one may obtain the linear part of the weak form (4.51) at ugﬁl

in the direction A(k)unH, as

9%,
Ent1 :0037(1121 dV + i Pffll dv — Ent1 - pobdV
QE QS aX_ QE
0 0 0

= k
o / §ni1 - Prpr dA — / Eni1- P£1J21 dA
aQgNTy,

05\,

5\ ¥ ()
) o€, oP\  oAu!
+ 0 €n+1 ’ Poﬁuﬁl dv + /Q5 % (8_]:_") %dv =0 , (468)
0 0 n+1

where use is made of (4.52), (4.53), and (4.67). Recalling the implicit Newmark for-

mula (3.71), one may write for element e

k 1 k 1—2p
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therefore .
(k) (k)
Aty = WAUn+1-

Substituting (4.70) into (4.69) and introducing the standard element interpolations (3.43)

(4.70)

results in

€l { IV 8 + [R5 ) — [P ) — (RS ]}
P (k)

OF

Sl S | INT RN+ [ B Bav p [Aa) = 0, (47)

n+1

where [ is a 9 X 9 matrix containing the components consistently with the

] iA
n+1 aF}B ’
convention adopted in (3.46). The quantity inside the large brackets in (4.71) is the element

oF

tangent stiffness matrix Kflgfl), that is,
(k)

Be]dV . (4.72)
n+1

oP
OF

2

e € p € e
K = [ NP RN [ B

J/

J/

. . . Vv
inertial stiffness material stiffness

Likewise, the quantity inside the small brackets in (4.71) is the residual vector, which quan-
tifies the imbalance of linear momentum at the (k)-th iteration of the Newton-Raphson

method. Upon assemblying (4.71), the global Newton-Raphson equations take the form
(Maf), + R~ For ) + K A0, =0, k=010, (4.73)
where Kﬁfjl = AKZS{? is the global tangent stiffness matrix.

e
A similar analysis may be carried out starting from the Eulerian form of linear momentum

balance (3.41) restricted to an element e with domain ¢, such that

0
&t Prr1@py1 do + Ensi Thpdv =
Qe Qe 8xn+1
Eni1* Prt1bpyr do + / Enit thy1da + / Eni1 tuprda . (4.74)
Qe oQenly 00e\I'y
By appealing to mass conservation, it is immediately seen that
D [ £n+1 " Pnt+1@n41 dv] (un—i-l; AU1n+1) = €n+1 ) pn+1Dan+1(un+17 A11n+1) dv
Qe Qe
= &1 Prr1Alyg g do . (4.75)
Qe
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A similar procedure can be employed for the term involving the body forces.

Neglecting non-linearities due to body force or surface traction, proceed next with the
differentiation of the stress-divergence term in (4.74). First, note that, upon using (1.85)
and the chain rule, one may conclude for a solid mechanics problem that

o0& I 1 _ l%
% r - (a_XF )-(jFSFT> = o (FS) . (4.76)

Taking into account the preceding relation, as well as (2.36), the differentiation of the stress-

divergence term may be obtained as

0
D { LI T, 1 dv] (Wpp1, Apyy) (4.77)
Qe 8Xn+1

1 o,
=D / _Q'(Fn—klsn—&-l)*]n-&-l av
Q5

J R aX (un-‘rla Aun-‘rl)
n+

0
_ D / Suit (g8, AV
Q5

8X (un+17 Aun-i—l)

= / % : [DF (un+1, Aun+1) Sn+1] dV + / % . |:Fn+]_DS (unH, Alanrl)] A%
Q

. OX o 0X

0§, 0Au, o€,
- /Qg gXH . ( 8X+1S”+1) dv+/98 —8321 - [Fri1 DS (w41, Au, 1) ]dV . (4.78)

Assuming, in analogy to earlier discussion on P, that
Sn+1 = g(En+17 to |n) T ) ) (479)

one may write
~ oS
DS (En+17 AE?’L+1> == 8_E AEn+1 . (480)
n+1

It is now possible to push-forward to the current configuration the first term on the right-
hand side of (4.77) to find that

ot [0Au, o€, 0Au, . )
/ o < +1Sn+1> = / ( : +1Fn+1) ' {—HFnH (Jnir Py T F o) | AV
Q Q5

8 0X 0X 8Xn+1 aan
8,1 (0Au,
L T, dv 4.81
Qe 0Xpp1 ( OXp i1 ) ( )

where use is again made of (1.85) and the chain rule. This term gives rise to the geometric
stiffness, namely the part of the tangent stiffness matrix which is due to the change of the

geometry in the current configuration for fized stress T, 1.

ME280B May 7, 2019



The Newton-Raphson Method in Non-linear Finite Elements 103

Repeat the above procedure for the second term in the differentiation to conclude that

o€, S 1
= /C 8—XH : {Fn—H (8_E> 1 5 (AF£+1FTL+1 + FzﬂAFnH) } av
0 n+

)3 oS\ 1 |/0Au,1\" dAu
T n4+1 . e - n+1 T n+1
/98 (Fn+1 X ) { (8E> +12 ( X ) Fop+F, ( X )]

where use is made of (2.36), (2.41), and the chain rule. Pushing the right-hand side of (4.82)

forward to the current configuration leads to

9€,
[ 2 S (s A

}dV,

(4.82)

0X
1 o€ oS OAu,
= | QLAY 1Y = Fr (22Ut ) g
/e Jn+1 ( 7’L+18Xn+1 n+1) <8E) » n—l—l( aXnJrl n+1

with the aid of (1.10), the chain rule, and exploiting the symmetry of the fourth-order tensor

/ % . [Fn+1DS (un+1, Aun+1)j| dV
Q

e
0

dv , (4.83)

7B in its third and fourth legs. This term gives rise to the material stiffness, namely the
part of the tangent stiffness matrix which is due to the non-linearity of the constitutive law
for stress at the fized geometry of the body in the current configuration. In component
form, one may express the integral in (4.83) as %(FiAfi,ijB) <g‘é—ichAuk71Fm>, where the
subscript “n + 17 is omitted for brevity.

Now obtain again the linear part of the weak form of linear momentum balance (4.74) at

ugﬁl in the direction Auﬁfjl as

23

k) _(k n k k

Enit szllagzll dv + TJSI ) Tng1 dv — Eni1- 107(1-i)-1bn+1 dv
Qe Qe 0x, (4 Qe

- / €n+1 ’ EnJrl da — / £n+1 . tn+1 da
aQenT, 80e\T,

(k)
(k) A - (k) 08,11 O0Au, (k)
+ Eni1 - P Dl do +/ (,;g : ( (k)+ Ty | dv
Qe Qe 0x, 0%,
| o¢ 25\ " 9Au® ]
(k)T 98 n+1 1 (k) (k)T ntl1 (k)
‘|‘/ k) (Fn+1 k Fn+1)' <_> Fn+1 ( k >Fn+l dv = 0, (4-84)
Qe J1(1+)1 8X§zl1 OE n+1 axgz-i)—l |
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where use is made of (4.81) and (4.83). Admitting the standard element interpolations
and recalling the implicit Newmark formula (3.71), as done earlier in this section for the

referential description, it follows that

~e

€l { IV 1)+ [Re @) — P )] - [R5 )

(k)

~e 1T Pn e e e e
FEal” S [ NS [ B A B

mertlal stiffness geometric stiffness

J/

e(k k e(k ~e(k
[ BB b d) = 0, (@s)

J/

v
material stiffness

where [Afbfl) ] is a 9 x 9 array, such that

8€n 8Aug‘3) i e o (k ) BV~ o (k
) = g B AL B YA ) (4.86)
ax’n-f—l 8Xn—&—l
in Q¢, while, in light of (4.83), [ ] is a 9 x 9 array whose components in full tensorial form
are
k 1 aSt A
CZ('J'IZZ - WF F]B) aEAB ch FI(D) 5 (4.87)

where the subscript “n + 17 is omitted. The symmetry of T is sufficient to deduce that

A A
98 0Au 6 4 85T which implies that the matrix [Aflfl)] is necessarily symmetric
ox 0x ox Ox

provided the element interpolation functions for u and & are identical. Indeed, it is easy to

show using the ordering convention in (3.46) that

(T, 0 0 T,y 0 0 Ty O O]
0 Toe 0 0 T3 0 0 T O
0 0 Ty 0 0 Tz 0 0 T
Tis 0 0 T 0 0 T3 0 O
A7 = |0 Ty 0 0 T3 0 0 Ty 0] . (4.88)
0 0 T3 0 0 Ty 0 0 Ty
Tz 0 0 Tys 0 0 T3 0 0
0 Toy 0 0 T3 0 0 Ty O
0 0 Ty 0 0 Ty 0 0 Thl
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This, in turn, implies that the geometric stiffness is always symmetric. The material stiffness

is symmetric only when the matrix [c| is symmetric, which, according to (4.87) is contingent
Gi(k)
AB
0Fcn
dimensional reduction to the arrays used to represent the geometric and material stiffness
: . 0 0€\° .

may be introduced by exploiting the fact that a—€ -T = (a—£> -'T, owing to the symmetry
X X

of T.

Upon assembly of the element-wise equations stemming from (4.85) one readily recovers

on the symmetry of in both the first two and the last two pairs of legs. Further

a global system analogous to the one in (4.73).
Equation (4.74) is the starting point for the Newton-Raphson method in fluids. In con-

trast with solids, the inertial term is more complex, since

D { £t " Pnt1@ni1 dv} (Vig1, AVii1)
Qe
= Eni1 Prs1Dan 11 (Vig1, Avipy) dv
Qe
= €1 Prr1AVyg dv

Qe
aAVn+1 8Avn+1 8Vn+1
_ > . AV, | dv .
0 €n+1 Prn+1 ( ot -+ axn+1 Vnpi1 -+ 8Xn+1 V41 v
(4.89)

On the other hand, the term emanating from stress-divergence is much simplified compared

to solids and is given by

0 0
D |:/ ﬂ . Tn+l d’U:| (Vn+l> Avn+1) = / ﬂ . DT(Vn—‘rla Avn+1) dv . (490)
Q Q

e 8Xn+1 e axn+1

This is because the Eulerian nature of the analysis implies that spatial derivatives are not
subject to linearization due to changes in the velocity unless the argument of the derivative
depends itself on the velocity. Of course, the weak form of linear momentum balance must
be supplemented by an equation that enforces mass balance in a weak form.

Revisit the Newton-Raphson method in the form of (4.73) and write it succinctly as

fa )+ K@ )aa®, =0 | ko= 0,1,2,-, (4.91)

with initial guess ﬁﬂl = U,. The algorithmic steps for the Newton-Raphson method are

outlined in Algorithm 1 below.
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Algorithm 1: Newton-Raphson method

Data: At,, state at time ¢,,, mazit, tol
Set k=0, 0" = 1,
while k < mazit
Form residual f(u n+1)'
if ||f(a n+1)|| < tol then
‘ return uﬁl and rest of state at time ¢,,11

else

Form and factorize tangent stiffness K(u ;jl)

Solve (4.91) for AunJrl and set ugfll) = ﬁ;jl o Aun+1,

Set k + k+1;

end

end

The Newton-Raphson iterations are terminated based on a pre-selected stopping criterion.

Such possible criteria include
(a) The residual norm criterion, ||f ( )|| < tol, which is shown in Algorithm 1,

(b) The “absolute” error criterion, ||Aun+1 | < tol,

(c) The “relative” error criterion, H” (;ﬁ” < tol,
1

(d) The “energy” morm criterion E( 1 = Au n]fngf(ﬁq(gl) < tol. In essence, E® is the

work done by the unbalanced forces f < u, +1> # 0 going over the displacement incre-
ment Au,, le.
The tolerance tol is typically set to be a multiple of the machine epsilon eps, say 10" xeps
for some positive integer m.
The modified Newton method of (4.28) leads to

with initial guess ﬁgg)rl = 10,. This is implemented very similarly to the original Newton-

Raphson method, as shown in Algorithm 2.
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Algorithm 2: Modified Newton method

Data: At,, state at time ¢,,, mazit, tol

Set k=0, 0, = 0,;

Form and factorize tangent stiffness K(ﬁfloll);
while &k < mazit

Form residual f(ugi)l) ;

if |£(a'*)))|| < tol then
‘ return ﬁgi)l and rest of state at time ¢,, 11
else
Solve (4.92) for Aa®", and set a7V = a®), + Aal®);
Set k + k+1;
end
end

In highly non-linear problems, it may be necessary to perform a line-search to either
accelerate convergence or to prevent divergence of the Newton-Raphson or modified Newton
iteration. Here, one obtains the increment Aﬁslk_zl by solving (4.91) or (4.92), as usual.

However, the displacement vector update is defined as

a = a™ paal) (4.93)
where 0 < 7, < 1 is a scalar parameter. The value of 7 is determined so that the scalar
function

(k)T o (k . (k
g(n) = Au7(1+)1 f(“iwzl + UAuill) (4.94)

satisfies g(nx) = 0, that is, given ﬁfﬂl and Aﬁfﬂl, the residual f (ﬁﬁfiﬁ)) is orthogonal to

Aﬁfﬁh as in Figure 4.14.

f(ﬁgﬁ)—l + Aﬁg?—l)

Figure 4.14. Schematic of line search
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The existence of such an 7 is not guaranteed for any given f, unkll, and Aun 41 In

practice, one typically seeks to find a 7, such that
(k)T gy (K k)T g (k
Augbll f(ua 2421 + nAu n+1)‘ < s ‘Augwh f(ugz—&)-l) ; (4.95)

where s is a user-specified positive parameter less than unity (e.g., s = 0.8). Clearly, line
search involves (relatively inexpensive) residual evaluations for different values of 7, until the
above condition is met. A coarse one-dimensional exhaustive search is effective in searching

for an 7, that satisfies (4.95), as shown in Algorithm 3 below.

Algorithm 3: Line search with Newton-Raphson method

Data: ﬁgﬂl, s, m

Form K(u (721) and f(u,, 421) and solve (4.91) for AunH,
Form f( n+1 + A n+1)

it |[Aa®Tr@®, +Aa®)| < s|Aaa® @™ )| then
return ugﬁll) = ﬁ(k)l + Aunll,

else
Set 1 = 0;

while 1 < m

Set n, = ( —i+1)/m;

Form f( n+1 + nkAun+1)

if ‘Aun—i-l f(a 7('L+1 +77kAun+1 ‘ <s ’Aun]ﬂ;ff( n+1) then

‘ return ugfll) — EIJZ + nkAun]izl,
else
| Setiei+1;
end
end

end

Quasi-Newton methods are iterative schemes with convergence properties generally some-
where between those of the Newton- Raphson and the modified Newton method. The general
idea is to obtain an approximation K le to the tangent stiffness matrix K(u( le) which sat-

isfies the condition

(k) A ~ (k— N N
K, (@, —alt) = f@l)) -ty , (4.96)
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which is referred to as the quasi-Newton or secant property. Subsequently, one uses the

approximate stiffness to efficiently solve

K£?1Aﬁ1(ﬁ1 = _f<ﬁ1(1k+)1) (4.97)
for Aﬁfﬁjl and update the displacement vector as

ﬁfﬁﬁl) = ﬁffll + Aﬁfﬁl : (4.98)

Note that the quasi-Newton property (4.96) shows that the approximate stiffness Kfﬁzl is
obtained by backward interpolation from the state at the k-th to the (k — 1)-st iterate, see
also Figure 4.15.

f(u(k>)_f(u(k71))

w(k) —q(k—1)

Figure 4.15. Schematic of quasi-Newton method in one-dimension

There exist many different ways (each corresponding to a different quasi-Newton method)

for constructing Kfﬁl Ideally, one expects of a quasi-Newton method that:

(a) The incremental displacement Aﬁfﬁl can be obtained efficiently, that is, without hav-

ing to factorize Kfﬁl This is possible if K;k_zl is obtained from Kfﬁ:)

update. In such a case, one may use the Sherman-Morrison-Woodbury formula, ac-

as a low-rank
cording to which, given an invertible n x n matrix K and two n x m matrices G and
H with m < n, then

— -1 —1 =1 75—1 -\ " rp—1

K+GH) ' - K'-K'G(1,+H'K 'G) H'K ', (4.99)

where I,,, stands for the m x m identity matrix. Thus, the cost of finding Aﬁgﬁl is

very small when, say, m =1 or 2.

(b) The stiffness matrix update preserves properties such as symmetry and positive-definiteness,

if these are present in the initial stiffness Kﬂl'
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Proceeding constructively, assume that K,(;)J)rl is symmetric and one wants to develop a rank-

one quasi-Newton method that preserves symmetry. Then, by necessity,

K" = K"V 427, (4.100)

where z is a vector to be determined and the subscript n + 1 is ignored henceforth for the

sake of brevity. Since the quasi-Newton property (4.96) needs to be enforced, it follows that

KED A k=1 +zzT AaD = f(ﬁ(@) — f(fl(k_l)) ’ (4.101)
which implies that
1 —(k—1
B S (k) prak—1)  ge =) A & (k—1)
= e [F) — 1) RO Radt) e

and also
AGEDTREVAGED 4 (z7Aak D) = [f7 (@) — £7@* )] AakD L (4.103)
The last two equations lead to

_ 1
K(k) - K(k 1)+ —(k—1)
fa®) — fak-0)1" Aak-1 — Aak-DTK" " Aat-1
[£(a®) — £( )]

(1 (L T
Fa®) — fak-) - K" UAﬁ(’“*l)] [f(ﬁ(’“>) —fakv) — K" DAﬁ(’“*l)] . (4.104)

Regrettably, this quasi-Newton method does not necessarily preserve definiteness and, in

fact, can become unbounded due to the term in the denominator of the right-hand side.
Unlike the preceding symmetric case, where satisfaction of the quasi-Newton property

uniquely determines the rank-one update, more assumptions are needed in the unsymmetric

rank-one case

K" = K"V 4227, (4.105)

where z; and z, are vectors, and z; # z,.

Broyden® further assumed that,

K(k)q(k_l) _ K(kfl)q(k—l) ; q* DTAakEY = o, (4.106)

6C.G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Com-
putation, 19:577-593, (1965).
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which asserts that the change in f predicted by K(k) along a direction orthogonal to Aa*—1
is the same with the change predicted by Kg*Y (stated differently, K" and K* " are

identical in the direction normal to Aa*~). Tt follows from (4.105) that
K(k)q(k_l) = K(kfl)q(k_l) + z1zL g%V | (4.107)

so that, in view of (4.106),
7z, = Aakb (4.108)

to within a scalar multiplier. Furthermore, the quasi-Newton property (4.96) necessitates
that

[K(’“‘” + zlAﬁ(’“‘l)T} AatD = f@a®) — gty (4.109)
which, in turn, implies that
1 (ks A 7=(k—1) k—1
T = TR [f(u< N — fa*) — K* VAl >] . (4.110)

A quasi-Newton method may be implemented as shown in Algorithm 4.

Algorithm 4: Quasi-Newton method

Data: At,, state at time ¢,,, mawit, tol
Set a'”), = q,;
Form K(Afloll) and f(ﬁ;oll) and solve (4.91) for Aﬁgloll;
Set @0y = W)y + Aaf);
while k& < mawit
Form residual f(u 1(1—0—1)
if ||f(a n+1)|| < tol then
‘ return uﬁfjl and rest of state at time ¢,
else

Form and factorize KnJrl

Solve (4.97) for AunJrl and set ufl’fll) = An+1 + Au 7(1’11
Set k + k+1;
end

end

The BFGS method (named after Broyden-Fletcher-Goldfard-Shanno) is a quasi-Newton
method intended for problems that lead to symmetric tangent stiffness matrix. The method

makes use of two rank-one updates, such that

&®® _ K(k—l)_i_zlle_'_Zng’ (4.111)
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where z; and z, are vectors with z; # z,. The BFGS method is employed as follows:

()

(iii)

(k1)

=k : X : :
Assuming K" (symmetric) and assumed known, determine the increment

Aa*Y from the standard quasi-Newton formula (4.97) as

—(k-1)

K~ 'Aa* D 4 fak-Yy = 0. (4.112)

Perform a line search along a*=1 that is determine Me—1, 0 < Mx—1 < 1, such that

a® — gD L p  AakD | (4.113)

Update the stiffness matrix consistently with a quasi-Newton property (4.96), where,

in particular,

[F(a®) — £(a®=D)] [Fa®) — f@ak)]"
M [F(0) — £(a®=0)" Aat-D
K4 aaen] [K 7 aae0]

Aatt-D TR Aq-1)

% _ g*Y 4

(4.114)

The update formula (4.114) is derived from (4.111) by imposing the quasi-Newton
property (4.96) and also setting z; to be proportional to the change in the force im-
balance f(a®) — f(a*~Y). It can be easily shown that if K"

then K" may or may not be positive-definite but is at least positive semi-definite.

is positive-definite,

The inverse of the stiffness matrix in (4.114) may be obtained in closed form by two
successive applications of the formula in (4.99). Special case is typically needed to
ensure that the terms in (4.114) are computed in a manner than minimizes errors

associated with algebraic operations involving small numbers.

The BFGS method is implemented as shown in Algorithm 5.
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Algorithm 5: BFGS method

Data: At,, state at time ¢,,, maxit, tol, s
Set a'”), = q,;
Form K(ﬁﬂl) and f(ﬁgi)rl) and solve (4.91) for Aﬁgg)rl;
Perform line search according to Algorithm 3 for given s and set
(1 . (0 . (0
u1(l+)1 = uiu)rl + nOAU'?(lJ)rl;
while k£ < maxit
Form residual f(ugfil);
if |£(a*)))]| < tol then
‘ return ﬁff_zl and rest of state at time ¢,
else
Form Kifjl as in (4.114) and factorize;

Solve (4.97) for Aal"),;

Perform line search and set ﬁfllfll) = ﬁfﬁl = nkAﬁfﬁzl;
Set k + k+ 1,
end

end

4.4 Continuation Methods

Recall the discrete equations of motion for solids, in the form of equation (3.72), and consider
a special case, in which inertial effects may be neglected (rendering the problem quasi-static)
and the external loading is proportional with proportionality factor A\ = A(s). Here, s may
be thought of an “implicit” measure of time and A is taken to be a smooth function of s.

Under these conditions, the N-dimensional discrete equilibrium equations (3.72) reduce to
f(G,41) = R(Gpq1) —Fopn = f‘(ﬁn-&-l) — AntiC,

where c is a constant force vector in RY and A, effects an alternative parametrization of

loading. Therefore, one may express the equilibrium equation at any load level as
f(u,\) = f(u)—Xc = 0. (4.115)

Now identify two distinct types of stability points (u, \) € RY x R, that is limit points (also

referred to as turning points) and bifurcation points. A one-dimensional representation of
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limit point bifurcation point

Figure 4.16. Limit and bifurcation points in (u, A)-space

these points is included in Figure 4.16. The distinction between limit and bifurcation points

was originally suggested by Poincaré”.

Some typical examples of stability problems from solid mechanics are shown below.

Example 4.4.1: Snapping of a deep arch

This problem involves an arch made of an elastic material. The arch is loaded by a downward-pointing
force at its midpoint. As the load increases, the arch resists the load in compression until it snaps
through, as shown in Figure 4.17. Subsequently, the arch resists the load in tension. This is an example
of a structure whose response exhibits two limit loads (one in the pre- and the other in the post-snap-
through phase).

Figure 4.17. Snapping of a deep arch

Example 4.4.2: Buckling of a cantilever column

This is the classical buckling problem of a column made of an elastic material and loaded by a compressive
force. It is well-known that upon reaching a critical value, the force induces buckling of the column,
in which case multiple equilibrium states become possible. This is an example of a bifurcation of the
original equilibrium state into a set of possible such states.

"H. Poincaré, Sur I’ équilibre d’ une mass fluide animée d’ un mouvement de rotation, Acta Mathematica,

7:259-380, (1885).
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An equilibrium path (or solution path) is defined as a set of functions u(s), A(s), such that
f(u,)) = 0. (4.116)

Let f : RY x R — R be continuously differentiable, and also such that for a given s

associated with a solution (u(s), A(s))

det [g—i(u(s),)\(s))] # 0. (4.117)

Then, by the implicit function theorem, one may conclude that there exists an open neigh-
borhood U C RY around u(s), an open neighborhood ¥V C R around A(s), and a unique

continuously differentiable function i : V — U, such that
f(a(\),\) = 0, (4.118)

see Figure 4.18.

u

Figure 4.18. Solution in neighborhood of point (u(s), A(s))

Upon differentiating the original equation with respect to s, it follows that

g—iz—: + %% = 0. (4.119)
A solution point (i, \) is termed a stability point if:
(a) o
det {8u (u, )\)] =0, (4.120)
(b)
ker [gi A 1 Zaz , n<N (4.121)

where n < N, o; € R and qb-ERN,i:l,Z,...,n, that is,

[gﬁ(u 5\)}(]5 =0, i=1,--,n, (4.122)
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of - _ .
range{au( )\)] = {yERN | qb;fpy =0, 1 = 1,---,n}- (4.123)

of

8_(11’ A) = K(u, A). Also, condition (a)
u _

is implied by condition (b), if it is stated explicitly that ¢; # 0, that is, if there exists a

Note that in the context of a finite element analysis,

0 _
non-trivial null eigenvector of 8_(1_1’ A). In addition, condition (c) is implied by condition (b)
u

when o is symmetric. Indeed, in this case note that, for any x € RV,
of ,_ - -rlof ,_ < of 17 -
[% (u,)\)]x =y= ¢, {% (u,)\)]x = X [au (u )\)] o,

of < -
= x {au(ﬁ A)](ﬁi = ¢,y = 0, (4.124)

where use is made of (4.121) and (4.123).
Now consider (4.119) at (@1, A) = (u(5), A(5)), in the form

of _ - [du of ,_ - [dA
u, \ A =0 4.125
e 0[] e (7] 129
and dot this equation with a non-trivial null eigenvector ¢ of 8u( 1, \) to conclude that
-7 8f du -T 6f dA
A) | — A) | — =0. 4.12
w0 ] o Ren]E] | - (120
However, owing to condition (c), the first term on the right-hand side of (4.126) vanishes,
therefore o "
- T
A) | = 0. 4.12
oo 3 [g] - o @127
One may now distinguish between two cases in connection with (4.127):
f - -
(i) q,’)Tg)\ (u,A) =0 (or, equivalently, é'c=0)
In this case, (i1, \) is a bifurcation point. Note that here it is typically true that
YR
ds|._."

(ii) qz’)Ta—f\ (u )\) # 0 (or, equivalently, q.’> c#0)

In this case, ( )\) is a limit point. Note that for (4.127) to hold it is now necessary

d\
that [%:| . = 0.
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In extraordinary circumstances, it is possible that g?)Tc = 0 and {d—] = 0. Such a
s
s=

stability point is simultaneously a bifurcation and limit point. ’

In the computational investigation of stability, the key tasks are:
(a) To detect stability points and classify them as limit or bifurcation points,

(b) To develop methods which allow the analyst to follow specific non-linear solution paths

past stability points. These are referred to as continuation methods.

(c¢) To develop methods which effect switching from one solution path to another in bifur-

cation problems. These are referred to as branch-switching methods.

Here, attention is focused on continuation methods. The classical approach is to define an

extended system of the form

f(uy—Xc = 0,

S 0 (4.128)

where g : RV xR — R is a given continuously differentiable function. The second of the above
equations is a global constraint equation which completely characterizes the continuation
method.

The extended system may be solved using the classical Newton-Raphson method. Here,

a typical iteration is
[ (u®) — A®c] + K (u®) Au® — AXPe = 0

T
(w® 20| au® 4 |2
’ N

99 (4.129)

] \(®)
g (0™, A )+L9u

(u®), A(k))} AN —

or, put in matrix form,

K (u®) —c

. Au® f'(u(k)) —\®e ( )
dg dg M| — k) y\(k ’ 4.130
{% (u(lf)7 )\(k))l o (u("‘), )\(k)) ANK) g (u( )\ ))
from where one derives the update relations
uft) = u® p Au®  AEED R AN (4.131)

A crucial observation here is that the tangent stiffness of the extended system of non-linear

equations (4.128) may be non-singular, even when K (u(k)) is singular. At the same time,
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this tangent stiffness matrix of the extended system is neither symmetric (even when K (u(k))
is) nor banded.
If both K (u(k)) and the stiffness matric of the extended system are non-singular, then

one may solve (4.130); for Au® according to
Au® = K7 (u®) [f (u®) — (A® + AXF)) ¢] (4.132)

and then substitute the above to (4.130)9 to find that

_ 8 (™ A®) K (u®) [E (u®) — (A® + AAD) ]

ou
0
+ a—i (®, AB) AND = _g (u® A®) - (4.133)
Solving (4.133) for AA®) leads to
-1
N {% (u®, A®) 4 g_lgl (u®, A®) K (u) e

{g (w9, 20) — 7 (9 ) K [f (u) wc}} L (4.134)

with Au®) subsequently computed by substituting AA*) from (4.134) in (4.132). This
solution procedure is referred to a bordering algorithm and the quantity inside the square
bracket in (4.134) is known as the Schur complement of K (u¥)) in the extended tangent
stiffness matrix in (4.130).

It can be shown® that the necessary and sufficient conditions for the tangent stiff-
ness matrix of the extended system to be non-singular when K (u(’“)) is singular with
ker [K (u(k’))] = ¢ # 0, that is, when there is a single non-trivial null eigenvector, are

c ¢ range [K (u(k))} , g—i (u(k),/\(k)) ¢ range [K” (u(k))} . (4.135)

Indeed, in this case
Ku")x # c, (4.136)

for any x € RY, therefore if 1) is the null eigenvector of K7, that is,

K" (u")y = 0, (4.137)

8See Section 4.1.1 in H.B. Keller, Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin,
1987, and also D.W. Decker and H.B Keller, Multiple limit point bifurcation, J. Math. Anal. Appl., 75:417—
430, (1980).
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it follows, in view of the arbitrariness of x, that

0 =9'K@u")x £ ¢'c (4.138)
or
Pplc # 0, (4.139)
as in Figure 4.19.
AV
C

— K x

Figure 4.19. Relation between the loading vector ¢ and the null eigenvector 1) of K¥

Note here that if K is symmetric (hence, the null eigenvectors ¢ of K and 1 of KT
coincide), then it follows from the above and the defining property of bifurcations that at a
bifurcation point (ﬁ, 5\), there is a ¢ # 0, such that

K(@MNe¢ =0 , ¢'c #0. (4.140)

Therefore, if K is symmetric, then the extended system is singular at any bifurcation point.

Returning to the original condition (4.135),, note that

K7 (u®) y g_i‘ (u®, A®) | (4.141)

for any y € RY. Therefore, given the null eigenvector ¢ of K (u(k)), it follows as earlier

from the arbitrariness of y that

0 = ¢'K"'(u)y # ¢Tg—lgl (u®, A®) (4.142)
or 5
g

¢ o (W A®) £ 0. (4.143)

Now, return to the extended system (4.130) and pre-multiply the first set of equations
with 97 to get

P K (u®) Au® — ypTecANP = —p" [f (u) — APc] | (4.144)
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so that, in light of (4.137) and (4.139), one may deduce that
" [f (u®) — Ak)¢]

ANF = oTe (4.145)
This implies that (4.130), takes the form
TIf (u®) — \F)
K (u®)Au® = —[f (u®) — AxFc] + v [f(u?) = ATl c. (4.146)

Yle
Since K (u(k)) is singular, one may stipulate that the (unique) solution Au® of the above

system is of the form
Au® = AulP) Mg (4.147)

where Au;(;k) is a particular solution obtained by fixing one of the degrees of freedom and
solving for the rest, and 2 is a scalar to be determined. Substituting (4.147) to (4.130),,

one gets
Og (k) (%) (k) (k) Og (k) (%) (k) — (k) (%)
(u A ) (Aup +z ¢) + 3 (u A ) ANY = —g (u A ) . (4.148)

from where 2™ is determined in light of (4.143). Thus, the exact solution (Au®™, AX®))
is obtained as a function of ¢, ¥ and Auﬁf“). These arrays can be computed without a
substantially higher effort than required for the original bordering algorithm.

Finally, when ker [K (u(k), A(k))} = Zaigz_ﬁi, n > 1, that is, when the tangent stiffness

i=1
matrix of the original system possesses more than one non-trivial null eigenvectors, then it

can be shown that the tangent stiffness matrix of the extended system is always singular.

Next, several choices for the constraint function g(u, \) are reviewed in detail.

4.4.1 Force control

Here, the constraint function takes the form
gu,\) = A=\, (4.149)

where ) is a specified positive scalar, see Figure 4.20.

In this case, the extended system becomes

[K (u®) —c

Au®

o’ 1| [AN® AR — )

_ F (u®) — %U%] (4.150)
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u
Figure 4.20. Force control in (u, \)-space
It follows from the above that
K (u®) au® = —[f (u®) - Ac| | (4.151)

Clearly, force control fails when K (u(i)) becomes singular. This is consistent with (4.135),

whose violation implies that 07 € range [KT (u(i))}, see Figure 4.21.

A L A

limit point bifurcation point

Figure 4.21. Range of validity of force control in (u, \)-space

Force control is easily implemented by updating A = A(s) at the end of each time step.

4.4.2 Displacement control
Here, the constraint function is defined as

g(u,\) = efu—1a;, (4.152)
where w; is a specified scalar and e; is an N-dimensional column vector given by

& =[0...0... .1 ...0]", (4.153)

[—th entry

see Figure 4.22. Essentially, the motion of the body is externally constrained by (4.152)
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|
|
|
|
|
|
:
U U

Figure 4.22. Displacement control in (u;, A)-space

so that the extended system be non-singular and the equilibrium path is traced for the
prescribed displacement ;.

Under displacement control the extended system (4.130) becomes

[K (u®) —c] [au®] _ _[f(u(k))—)\(k)c] (4.154)

el 0| [AXK) e/u®) — g

It follows from (4.135), that displacement control fails if there is a vector x € RY, such
that K (u(k)) X = e, in which case displacement control along e; is unable to remove the

singularity of the extended system, see Figure 4.23.

A

Uy

Figure 4.23. Range of validity of displacement control in (u;, A)-space

The implementation of displacement control in finite element codes is trivial, since it
merely amounts to imposing displacement boundary conditions, as routinely done for Dirich-
let boundary conditions.

More generally, one may impose a set of M constraints of the form

gm(w,\) = el (u)—d,, , m=12,...,M, (4.155)

where M < N. This would lead to an extended system with N + M equations and M load

vectors A, along directions c,,.
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4.4.3 Arc-length control

The idea of arc-length methods is impose a constraint to the arc-length s of the equilibrium
path, defined as

s = /ds = /\/dquu+T2d>\2, (4.156)

where 7 is a scaling parameter that effects consistency of units in (4.156), see Figure 4.24.

TA

TdMN | 22222222224~

du U

Figure 4.24. Arc-length in (u,7))-space

Arc-length methods fix an s = sy at a given solution point (u,,7A,), and seek to determine
a new equilibrium point under this constraint. Various arc-length methods are possible by
means of different approximations to the actual arc-length of the solution curve (since the
latter is not known in advance).

In the spherical arc-length method around the solution point (u,,7\,), the constraint

function takes the form

g(u,)) = (u—w,) (u—u,)+ 72\ = \)?* — 53, (4.157)
see Figure 4.25.
TA
(20, VN R
| 50
U, U

Figure 4.25. Spherical arc-length in (u, 7\)-space
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A simplified version of the spherical arc-length method is obtained by linearizing the

constraint function along the tangent [t,] to the solution path at (u,,7\,), where

t.] = [T (A:t - A:) ] (4.158)

with magnitude sg, hence,
(Wt — 1) (Wy — W) + 72 (At — M\p)? = s, (4.159)

see Figure 4.26. If follows that the constraint function at (u,,7\,) becomes

TA

T/\nt ———————————
t, T

L

T)\n —————— : \
|
. o
| ! |
| ! |
| ! |
| ! |
| ! |
' |
Un, Unt u

Figure 4.26. Normal-plane arc-length in (u, 7\)-space

g, \) = (W — ) (0 —w,) + 72Nt — A) (A = \y) — 55 (4.160)
In view of (4.159), one may also write

g(u,\) = (uy — )" (u—w,) + 72N — M) (A = \)
— (W — )T (W — W) + 7t — M) Dt — M)
= (W — W) (W= W) + 72 (Nt — M) (A = Ant) (4.161)

u-—u, . .
so that g(u, \) = 0 implies that [t,,] is orthogonal to 0 )\t )] , see Figure 4.26. Owing
T - \nt
to this property, the preceding method is referred to as the normal-plane arc-length method.

Given (4.160), the extended system now takes the form

f (u(k)) —\®¢
= — [ o(u®, A . (4.162)

Au®)
ANKF)

K (u(k)) —cC
(unt - un>T 7—2()\7115 - /\n)
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Its main advantage over its spherical arc-length counterpart is that all extra terms in the

extended stiffness matrix are constant.

The implementation of normal-plane arc-length in connection with the Newton-Raphson

method is summarized in Algorithm 6 below, following the so-called Riks- Wempner method®

Algorithm 6: Riks-Wempner method

Data: state at time t,,, S
Solve K(u,)Au = AX'c

for any AX: > 0 (ascending part of curve) or AX! < 0 (descending part of curve);
Auy
TAN,

Compute [t,] = a*[t}], where a* enforces (4.159);

Use (4.158) to write [t}] =

Solve (4.162) using the Newton-Raphson method;

Note that the preceding algorithm requires that K(u,) be non-singular and also that
the extended system in (4.159) be non-singular during the Newton-Raphson iterations. As
already argued, the latter is possible even when tracing bifurcation points, as long as the

continuation method does not “hit” the singularity at one the iterations.

A simple brute-force computational method for detecting and classifying stability points

with the aid of arc-length continuation is described in Algorithm 8 below.

9E. Riks, The application of Newton’s method to the problem of elastic stability. ASME J. Appl. Mech.,
39:1060-1065, (1972).
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Algorithm 7: A method for detecting and classifying stability points

Data: state at time t,,, sq, tol, tolk, tolp, maxit

Form K(u,);

Perform an LU decomposition on K(u,,) and store the signs of the diagonal terms in U;

while &k < mazit

Use arc-length with s = sq to advance solution to (W41, Ani1);

Perform an LU decomposition on K(u,1) and store the signs of the diagonal terms
in U;

if no change in the signs of the diagonal terms of U from n to n + 1 then

return (u,.1, \,y1) and advance time (no stability points detected);

@

Ise if change to exactly one diagonal term of U from n to n + 1 then
Use bisection to bracket stability point until @ such that |det K(u)| = tolk

Use subspace iteration to find the null eigenvector ¢ of K(u)
if ‘c_ﬁTcJ > tallp Whem

| (@, \) is a limit point
else

| (@, \) is a bifurcation point

end

else
| Set k< k+1, so < so/2 and repeat

end

end

Note, in connection to the preceding algorithm, that the LU decomposition of a square
matrix such as K is unique as long as the matrix is non-singular.
There exist alternative procedures for the determination of stability points, which are

not discussed here.

4.5 Computational Treatment of Constraints

The motion of a continuum is often subject to constraints. Typical examples of such con-

straints are noted below.

Example 4.5.1: Incompressibility
Certain rubber-like solid materials are practically incompressible, that is their deformation is always
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volume-preserving. In light of (1.10), this implies that their motion is subject to the constraint
detF = 1, (4.163)
or, equivalently in terms of the principal stretches in (1.30),
MA2Ag = 1. (4.164)

Many fluids (especially, liquids) are also practically incompressible. In this case, taking into consid-
eration (1.52), it is readily concluded that an incompressible fluid is subject to the constraint

trL = divv = 0. (4.165)

Example 4.5.2: Inextensibility along a given direction
Some solids are reinforced by inextensible rod-like structures along a given direction, say M, in the
reference configuration. In this case, no stretching is permitted along M, which leads to the constraint

M, = M-CM = 1. (4.166)

Example 4.5.3: Impenetrability of matter

According to this fundamental postulate, two material points may not occupy the same position in space
at the same time. In the context of a deformable solid coming to contact with a rigid foundation, as in
Figure 4.27, the gap (penetration) function g, defined as

g = (xf—x%x)'n (4.167)

must satisfy the constraint condition
g > 0. (4.168)

m

rigid foundation

Figure 4.27. Contact of deformable solid with rigid foundation

Constraints are classified in various ways. Here, attention is placed on the distinction

between:
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(a) equality (bilateral) and inequality (unilateral) constraints

Equality (resp. inequality) constraints are mathematically expressed by equalities
(resp. inequalities). For instance, incompressibility is an equality constraint, while

impenetrability is an inequality constraint.

(b) internal and external constraints

Internal constraints are expressed in terms of measures of deformation (or rate of
deformation), while external constraints cannot. For instance, in view of (4.163),
(4.165) and (4.168), incompressibility is an internal constraint, while impenetrability

is an external constraint.

(c) rheonomous and scleronomous constraints

Rheonomous constraints depend explicitly on time, while scleronomous constraints do
not. For instance, all time-dependent (resp. time-independent) Dirichlet boundary

conditions may be thought of as rheonomous (resp. scleronomous) constraints.
Consider a bilateral scleronomous constraint written for a solid in the form
c(u(X,t)) =0 (4.169)

and assumed to apply on a part Cy of either the domain Ry or the external boundary 0Ry.
While the constraint is expressed in (4.169) in terms of the displacement field, it may be
thought of as either internal or external.

When the motion of the solid is subject to (4.169), the space of constraint admissible

displacements becomes

U = {u:RgxR—=R* | u(X,t) = u(X,t) onTl,, c(u) = 0onCy xR} .
(4.170)
In the context of finite element approximations, one may choose to construct subsets U,
of U,, and satisfy (weakly) the balance laws over U,,. Such a so-called primal method may
be impractical if the constraint condition is difficult to enforce by the choice of admissible
displacements.
An alternative, so called dual method retains the original space of admissible functions U
and introduces a new Lagrange multiplier field. To this end, recall that the constraint (4.169)

is imposed on kinematic variables and rewrite the linear momentum balance equations (3.42)
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as

g-poadv+/ L pav = [ epbavs [ ¢pda- De(u, €)-AdV , (4.171)

Ro 'Ro aX Ro qu CO

where A = A(X,t) is a Lagrange multiplier field on Cjy x R. Note that the term in (4.171)
associated with the constraint could be a surface rather than a volume integral. Also note

that, since c(u) = 0 for all admissible displacement fields, then
Dc(u, &) = 0, (4.172)

and the Lagrange multiplier field A which enforces the constraint is workless, in the sense
that
Dc(u,&)-AdV = 0. (4.173)
Co
The preceding observation does not generally hold for rheonomous constraints.

Example 4.5.4: Incompressibility in dual methods
Taking into account (2.60) and (4.163), the constraint integral term in (4.173) becomes

3

Dc(w, &) -AdV = / J—~ FTAdV . (4.174)
Ro 0X

Ro

One may now combine this term with the stress-divergence term in (4.171) to conclude that

23 / o J— 23 T
— -PdV + J—= -F "AdV = — - (P +AF dVv 4.175
=, 0X R, OX o OX ) (4.175)
1913 .

where use is made of (1.73) and the chain rule. The preceding relation shows that the scalar Lagrange
multiplier field A may be interpreted as a pressure. ldeally, the Cauchy stress T should be decomposed to
a pressure-independent part (which remains constitutively specified) and a pressure part, which coincides
with the Lagrange multiplier A.

A similar analysis applies to incompressibility in fluids, where, according to (4.165),

_ 23 _ [ 98 .
/RDC(V,E)-Adv = /Rtr (8X>Adv = /R@x Aidv . (4.177)

Example 4.5.5: Tied sliding in dual methods

Consider a special case of the impenetrability constraint in which a given part C is a deformable body's
boundary is in persistent contact with a rigid foundation, but is allowed to slide on it. This is the case of
tied sliding. Now, the constraint condition (4.168) is imposed as an equality. Hence, in light of (4.167),
the constraint integral term in (4.173) becomes

Dc(u,€) - AdA = / £-AndA (4.178)

CO CO
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therefore the scalar Lagrange multiplier field may be interpreted as the magnitude of the normal traction
(pressure) necessary to resist penetration or separation of the two bodies.

The extended equations of motion now read

23
E-p adV—i—/ — - PadVv
Ro R OX
— & pobdV — £-pdA+ [ Dc(u,&)-AdV = 0, (4.179)
Ro Ty Co
/ 0 -c(u)dV = 0, (4.180)
Co

where 8 = (X, t) is an arbitrary weight field on Cy x R.

In discrete form, one may write

De(w,€)-AdV = & d(@A |
o ; (4.181)
/e-c(u)dv = 6 g(a),
Co

where 0, € € RY and where A, 0 € RM with N > M, consequently d : RY — RY x RM and
g : RY — RM . Taking into account (4.181), one may write

| 8- Detwgyav = 6" De(e — & D'g(wd
Co (4.182)
— £dwe
therefore
d(a) = D'g(a) . (4.183)

Given (4.179), (4.180), and (4.181), the discrete equations of motion become

': [f(ﬁ)+d(ﬁ)[x] — 0,

o (4.184)
6 gu) =0,
or, after accounting for the arbitrariness of é and 0,
f(a)+d(@A = 0,
(%) (%) (4.185)

g(u) = 0.
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Note that in the dual method, the original N equations for the unconstrained problem with t
as unknowns are replaced by N + M equations for the constrained problem with 1 and A

as unknowns.
To use the Newton-Raphson method in (4.185), write

£ (a®) + K (a®) aa® +d (@®) A" + p7d (@®) A" aa® +d (™) AAY = o
g (a®) + Dg (a®) Aa® = 0
(4.186)

where, as usual,

(4.187)

and also, upon recalling (4.183),
D [/ 0-c(u)dV] (u(k),Au(k)) = 6 Dg(a®™)A
Co
= Au® d(@™) 9 = 6'd” (a®)Au® . (4.188)

The linearized system of equations (4.186) may be put in bordered matrix form as

K (a®) + D7d (a®) A" d @] [aa®]  [e@®)+d@») A"
d” (a®) o |[aA"] g (a®)

The extended tangent stiffness matrix in (4.189)above is symmetric provided both K (ﬁ(k))

. (4.189)

and D'd (ﬁ(’“)) A(k) are symmetric. However, this stiffness matrix is not banded. In fact,
given its structure, a special equation solver is required to take care of zero diagonals, as the
classical Gauss elimination procedure without pivoting would generally fail.

Dual methods enable the use of the original (unconstrained) space of admissible dis-
placements U and its finite element subspaces U, which is convenient. The price for this
convenience is in the need to solve an extended system of equations, including the Lagrange
multipliers A € L, where L is the space of admissible multiplier fields. Also, the choice of
discrete admissible fields U;, and L, is subject to substantial restrictions and one needs to
exercise caution in order to ensure solvability of (4.189).

In the special case of linear elastic response subject to a constraint which is also linear

in u (or F), the matrix form of the extended system becomes

K d [t (0) .
a’ o g(0)] '

~

a
A
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where K and d are constant matrices. This would be the case for the problem of incom-
pressible linear elasticity.

A corresponding analysis applies to a constrained problem in fluid dynamics.

The treatment of constraints by Lagrange multipliers in continuum mechanics is often
motivated by the formalization of constrained non-linear optimization problems of the general
form: find the extremum of a functional G(u), subject to constraint condition c(u) = 0.
In solid mechanics, under severe restrictions, there exist variational theorems, according to
which the equations of motion are derived as extrema of a functional G(u) to zero. For
example, in linear elastostatics, one may define the total potential energy functional G(u) of

a body occupying the region R as

Glu) — 1/ o(u) - e(u) dV—/ u-pode—/ w-pdv . (4.191)
2 Ro Ro Lo

Here o and e are the stress and strain of the infinitesimal theory. It is easy to confirm

that the equations of motion are recovered by setting DG(u,€) = 0, where, under mild

assumptions, G attains an infimum (which reduces to a minimum for the discrete case) at

the solution u*, that is G(u*) = infy; G(u), where U is the space of admissible displacements.

A corresponding variational principle may be also established for the problem of finite elastic
deformations, see Section 5.2.

In this restricted context, the Lagrange multiplier method of (4.179) and (4.180) can

be interpreted as a constrained extremization method. To this end, define the Lagrange

multiplier functional G, as
Gr(u,A) = G(u) —l—/c A-c(u)dV . (4.192)
0
Then, the preceding extended system is recovered by setting
DGr(u,&A,0) = 0. (4.193)

Indeed, this saddle-point problem may be equivalently expressed as

DGL(U,f;A,O) = DGL(U,é)—l-DGL(A,O) =0, (4194)
A f‘i;ed u g(ed
which implies that
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It is then immediately clear that (4.195); 2 coincide with (4.179) and (4.180). Various ap-
proximations of the above Lagrange multiplier method are possible to bypass the need for
the direct solution of the extended system of N + M equations. Three such regulariza-
tions discussed here are the classical penalty, the perturbed Lagrangian, and the augmented
Lagrangian methods

In the classical penalty method'®, one considers the functional G p defined as

1
Gp(u,e) = G(u)+ 5/ ec(u) - c(u)dV , (4.196)
Co
The perturbed Lagrangian method is associated with the functional Gpy given as
1
Gpr(u,A;e) = G(u) +/ A -c(u) dV—/ A-AdV (4.197)
Co 25 Co

where, again, ¢ > 0 is a penalty parameter. Lastly, the augmented Lagrangian method is
defined in terms of the functional G 4; written as
1
Gar(u,A;e) = G(u) —i—/ A-c(u)dV + 5/ ec(u) - c(u)dV . (4.198)
Co C'O
In all three functionals, € > 0 is a penalty parameters.
First, examine the classical penalty method and assume that G(u) attains an infimum
at the solution u* of the equations of motion, such that c(u) = 0. Then, it can be proved

conditional upon sufficient smoothness of the involved functions that if u} is such that
DGp(ul,§) =0 (4.199)
and Gp(u,¢e) attains an infimum at u?, then

limul = u*. (4.200)
E—0C0

While the formal proof of this result is omitted here,!!

a simple intuitive argument can
be made by observing that as ¢ — oo the penalty term would become unbounded unless
c(u) = 0, which is necessary to attain an infimum of Gp.

Upon setting the differential of Gp in the direction &€ to zero, one finds that

DG(u,§) —i—/c e[Dc(u,&)] - c(u)dV = 0. (4.201)

10See R. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bulletin

of the American Mathematical Society, 49:1-23, (1943).
11Gee p. 366 in D.G. Luenberger, Linear and Nonlinear Programming, 2nd edition, Addison-Wesley,

Reading, (1984).
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134 Solution of Non-linear Field Equations

In discrete form, this translates to

£ [f(a)+ed(@)g@) = 0, (4.202)
where use is made of (4.181). A typical step of the Newton-Raphson method would then be
¢ [f (@) + K (a®) Aa® + ed (a®) g (a®)
={D"d (V) g (a¥) + d (a®) Dg (@)} Aa®| = 0 (4.203)
or, upon recalling (4.183), it follows that
[K (@%) + £ {D7d (&%) + g (a®) d (a®) d” (a®) }] Aa®

= —f (a®) —ed (aW) g (a®) . (4.204)

Clearly, the classical penalty method requires the solution of only N algebraic equations

and u! satisfies the constraint only approximately, see Figure 4.28. The extended stiffness

GP ErH= 0

Figure 4.28. Penalty functional and the enforcement of the constraint ¢ = 0

matrix in (4.204) will be symmetric if K itself is symmetric. This is immediately concluded

from the identity

D {D { / %50(11) : c(u)dV} (u,g)} (u, Au)
- D{D { / %ec(u) -c(u)dv] (u, Au)} (w,€), (4.205)
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as the order of differentiation in the directions & and Au does not matter, conditional upon
sufficient smoothness of the integral in u. At the same time, the form of the extended
stiffness matrix in (4.204) reveals that ill-conditioning is bound to occur for large values of .

Next, consider the perturbed Lagrangian method. Here, extremization of the functional
in (4.197) leads to the set of equations

DG(u, &) + /C [De(u, €)]-AdV = 0 (4.206)

" /c {c(u) - %A] -0dV = 0. (4.207)

The second of the above equations is strongly satisfied when
A = ec(u) (4.208)

in Ry, in which case the first equation becomes reduces to the equation (4.201) of the classical

penalty method. Alternatively, one may choose to enforce (4.207) weakly, resulting in

0 {g(ﬁ) —é[\] =0, (4.200)

which lead to the discrete equations

~

A = eg(n) . (4.210)

Depending on the interpolation of the multiplier field, it may be possible to efficiently de-
termine A at the element level. In such a case, the perturbed Lagrangian method would be
an attractive alternative to the classical penalty method.

Finally, consider the augmented Lagrangian method, which may be thought of as a combi-
nation of the Lagrange multiplier and the classical penalty method. Here, the extremization

of the functional in (4.198) leads to the equations

DG(u,£)+/c [Dc(u, €)] -AdV—i—/c e [Dc(u,&)] - c(u)dV = 0 (4.211)
and
/ c(w€)-0dV = 0. (4.212)
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A common algorithmic implementation of the augmented Lagrangian method is the so-

called Uzawa algorithm'? as follows:

Algorithm 8: Uzawa’s algorithm for updated Lagrangian methods

Data: state at time t,,, ¢, (, maxits, tol

Set k=0, Ag =0 and uy = u,;

while £ < mazit and |c(uy)| > tol
Solve discrete counterpart of (4.211) for Auy;
Set U1 = up + Auy;
Set A1 = Ay + (c(uyg);

Setk+— k+1
end

The above algorithm can be proven to converge to the desired solution given any ¢, such
that 0 < ¢ < 2¢, for a class of minimization problems with linear constraints.!®

The augmented Lagrangian functional with the Uzawa algorithm requires the (repeated)
solution of only N equations. However, in contrast to the classical penalty method, ill-
conditioning of the tangent stiffness matrix is altogether avoided, since the penalty parameter
¢ is kept fixed at relatively small. In addition, the constraint equation is satisfied exactly
despite the fixed value of the penalty parameter.

While the classical penalty method and its two variants are mathematically justified only
for under the severe restriction of the existence of a variational problem for the momentum
balance equations, they are used heuristically and with great success on a wide array of
problems in computational mechanics.

A critical question in designing a robust finite element approximation of a continuum-
mechanical problem in the presence of constraints is the choice of admissible displacement (or
velocity) fields and of Lagrange multplier fields. To address this question, one may consider,
for simplicity, a linearized counterpart of the extended system (4.189), in the form

[K al o] _ _H , (4213

A~

u

d? ol [A g

where now K, d, f, and g are constant arrays. It can be shown'* that necessary and sufficient

12}, Uzawa, Iterative methods for concave programming. In K.J. Arrow,L. Hurwicz and H. Uzawa editors,
Studies in linear and nonlinear programming, Stanford University Press, Palo Alto, (1958).

13Gee p. 48 of R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting
Methods in Non-linear Mechanics, STAM, Philadelphia, 1989.

14Gee Section 3 in F. Brezzi and K.-J. Bathe, A discourse on the stability conditions for mixed finite
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conditions for the above system to be solvable are that: (i) N > M and (ii) if v € kerd
and wIKv = 0 for all w € kerd, then v = 0. These conditions ensure that the solution
to (4.213) exists, but do not guarantee that it will be a convergent solution, say, in the sense
of h-refinement. Regardless, condition (i) is an easy one to check when contemplating a dual

method for the solution of a constrained problem.

Example 4.5.6: Constraint counts for incompressibility
Consider a square block meshed using n xn 4-node elements (n > 1) and assume that it is used to model
an incompressible continuum (solid or fluid). Let the displacements or velocities be fully prescribed on
the boundary (except for a single point). In this case, the number of uknowns displacement or velocity
degrees of freedom is

N =2(n-1)>%*-2. (4.214)

Also, assume that the Lagrange multiplier field is piecewise constant in each element and free of
specification (except for one point). In this case, the number of uknown Lagrange multiplier degrees of

freedom is
M =n?-1. (4.215)

Clearly, in this case N > M so the preceding solvability condition (i) is met. Moreover, it is immediately
clear from (4.214) and (4.216) that, under uniform h-refinement,

lim — = 2. (4.216)

This ratio is considered optimal, as it equals the ratio of linear momentum equations to constraint
equations in the continuum problem.

element formulations, Computer Methods in Applied Mechanics and Engineering, 82:27-57, (1990).
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Chapter 5

Constitutive Modeling of Deformable

Continua

5.1 Incompressible Newtonian Viscous Fluid

In this problem, the balance of linear momentum is solved together with the condition of

incompressibility, that is,

divT + pb = p<a—v+@v) in R,

ot 0x (5.1)
divv = 0 inR.
These equations are subject to the boundary conditions
V; = U; on Fuz
_ (5.2)
ﬂjnj = tl on F(h

where, Ty, NTy, = 0, Ty = U2, T, Ty = U, Ty,, and 9R =T, UT,, as well as the initial
condition

v(x,0) = vo(x), (5.3)

where div vy = 0. Note that if I'; = 0, then the boundary velocity v should satisfy

/ v-nda = /divvdv = 0. (5.4)
R R

The Cauchy stress T is written as
T = —pi+2uD, (5.5)
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where, as argued in Section 4.5, p is the Lagrange multiplier which enforced the incompress-
ibility condition (5.1)2 and g is the viscosity coefficient (assumed here to be constant). Given

the preceding constitutive law, one may write

divT = div(—pi+2uD) = —gradp+2udivD = —gradp+ 2udiv (g_v) . (5.6)
b

Starting from the weak form of linear momentum balance in (3.184), rewrite the stress-

divergence term as
9E\ , o\, _ AN A
/R <&> . [—pl-F 24 (&> } dv = /R [—pdw{—l— (&> < 2u (8_X> ] dv . (5.7)
Therefore, the weak form of linear momentum balance (3.184) takes the form
oV ov , AN A
o 224 22 — S o =
Ré p(8t+8xv> dv—i—/R ple€+<8x) ,u(ax)]dv

_ /g-pbdv—i— ¢ Tda. (5.8)
R

Iq

In addition, the weak form of the incompressibility condition may be expressed as

/ o(divv)dy = 0. (5.9)

Before proceeding with the numerical approximation of the preceding weak forms, recall
the Helmholtz-Hodge decomposition, according to which any vector field v : R — £2 can be

uniquely decomposed into a solenoidal and an irrotational part, that is,
V = Vet Vi, (5.10)

where v,, satisfies

divvgy = 0 inR,

(5.11)
Vsor - = 0 onTR,
while for v;, there exists a scalar function ¢ : R — R, such that
Vi = grad ¢ , (5.12)
hence
curl vy, = curlgrad¢ = 0. (5.13)
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A proof of this result can be found elsewhere.
A very efficient and straightforward method for solving the incompressible Navier-Stokes
equation using finite elements is based on a classical work in the context of finite differences.?
In order to appreciate this approach, it is introduced first using the strong forms. To this
end, suppose that the velocity and pressure fields have already been determined to be v,
and p,, respectively, at time t,, respectively, and the same fields are to be determined at

time t,,11 = t, + At,. Therefore, it is known that
P <(9Vn + %VH) = —gradp, + 2pdiv (%) + pb,, ,

ot (5.14)

divv, =0,

everywhere in R,,. To advance the solution in time to t,.;, first determine a predictor

velocity v}, ;, such that

. — Vn a~n . a n B .
p(vn+1 Y + M Vn) = 2udiv <L> +pb,y1 InR,

At, 0x 0x
V:_H = Vpt1 on I'y ) (515)
t,., =0 onl .

Note that the predictor velocity ignores completely any forces due to change in the pressure,
as well as any external tractions. As a result, it does not necessarily satisfy the incom-
pressibility condition. Subsequently, a corrector step is applied to account for the pressure,

as
%
Vntl = Vg

At,

Note that in the above equation, both v, ; and p,; are unknown, so this equation cannot

= —gradp,.1 - (5.16)

be solved directly. Equation (5.16) may be readily rewritten as
i At,,
Vat1 = Va1t o grad ppi1 (5.17)

If v,r1-n =0 o0n R, then (5.17) represents precisely the Helmholtz-Hodge decomposition
in (5.10-5.13). Hence, in this case, v, and p,;; are obtained by projecting v}, onto

its solenoidal and irrotational parts. Even in the case of more general boundary conditions

1See, e.g., Section 6.3.1 in P. Papadopoulos, Introduction to Continuum Mechanics, ME185 course notes,

Berkeley, 2017.
2A. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745-762, (1968).
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for v,41, one may take the divergence of both sides of (5.17) and observe (5.1)s to deduce

the Laplace equation
At, . .
divvy,,, = —div(gradp,11) in Rpq1, (5.18)
p
for p, 11, subject to boundary conditions

At,
‘n =0 onl,,

. ov,\° _
|:_pn+11 + 2u ( 6x) } n =t,; only,.

Note that (5.19); by taking the normal projection of (5.17) and recalling (5.15),. Likewise,

(5.19)5 is obtained from (1.76) and (5.5), where the rate-of-deformation tensor is evaluated

(5.19)

at v = v, (or, possibly, v.= v} ) to avoid an implicit dependence on (the yet unknown)
Vpi1. It follows that (5.19); 2 are now respectively the Neumann and Dirichlet boundary
conditions for the Laplace equation (5.18). After p,.; is calculated from (5.18) and (5.19),
the velocity v, is determined from (5.16).

Turning to the Galerkin-based finite element interpretation,® this procedure translates to

finding the predictor velocity v}, ; from

ovE OV, o€, ..\ _ [0v.\°
/ Eni1- < =+ Ix Vn) dv = / [— (%) 2 ( ax) +&n1- an+1] dv ,
R

(5.20)
Nop1 - Vapi—Vn

where —5+ = A with v, = v, onl, and §,,; = 0 on I',. Subsequently, solve

the weak counterpart of (5.16) together with the incompressibility constraint (5.1),. Upon

using the divergence theorem for the former, the system of equations may be expressed as

Vn41 — . _
/ Eni1° P + H dv = /Rle &1 Pur1dv +/r &1 turdv,
q

/Un+1 divv, 1 dv = 0,
R

with v, n=v,;-nand §,,,-n=0onTI,. Notethat the tangential component of the

(5.21)

velocity does not affect incompressibility.
Neglecting the element representation for brevity, proceed with the global matrix form

of this two-step algorithm. The predictor step is expressed as
1
At,

[IM] ([V3 1] = [¥a]) + [A(V)] + K][Va] = [Fy,], (5.22)

3J. Donea, S. Giuliani, H. Laval, and L. Quartapelle, Finite element solution of the unsteady Navier-Stokes
equations by a fractional step method, Comp. Meth. Appl. Mech. Engrg., 30:53-73, (1982).
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subject to [Vi 4] = [Vpu1] on Ty In (5.22), [M] is the global mass matrix (symmetric,
positive-definite), [A(¥,)] is the global advection vector (a non-linear function of v,,), [K]
is the global diffusion matrix (symmetric, positive-semidefinite), and [F%_,] is the global
external force due to prescribed body forces only. This system is now solved for [v;;]. The
solution becomes trivially simple to compute if [M] is rendered diagonal, as earlier. Either

way, one may write
Vil = [Va] = At M) ([AV)] + [K][va]) + At [M]THE, ] (5.23)

For the corrector step, write the matrix counterpart of (5.21) as

1 ) N N 7e P R e
A M (Fnsa] = 95)) = [Clluia] = [l (5.24)

[C]T[‘A’m—l] - [Gn+1] )

where [C] is the matrix emanating from the divergence operator and [F},,] is the external
force vector due to prescribed tractions only. Note that the right-hand side of (5.24), becomes
non-zero upon accounting for boundary conditions because it needs to account for the discrete
counterpart of the boundary condition v,;1 -n = v, -non [,.

The pressure [P,+1] may be determined from the system (5.24) as

[C] M [C[Pasa] = AL%([Gn-&-l]_[C]T[‘A’;-s-l]) — [C M) [F (5.25)

where [C]7[M]~![C] is symmetric and under sufficiently general conditions has the rank of

[Prni1]. Lastly, the velocity [V,41] is determined as
] = W] + AL (IF,, ]+ [Cl o)) (5.26)

Therefore, obtaining the new state vectors [V,,41] and [p,41] requires the solution of a sym-

metric linear algebraic system for [p,41] and performing two updates for [v} ] and [v,41].

5.2 Nonlinear Elasticity

Recall the mechanical energy balance equation (1.80), and admit the existence of a strain

energy function v (F) per unit mass, such that

/7>T~de = /Ppwv. (5.27)
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Recalling the result on work-conjugacy of stress and strain or deformation measures, one

may also write

/pwv = / poth dV = / P-FdV = / S-EdV . (5.28)
P Po Po Po

It follows from (5.28) that

/7> <pog—;f—P> FdV = 0, (5.29)

so that, using a standard argument,

O

P = pp— .
Pan

(5.30)

This constitutive law characterizes a general homogeneous hyperelastic (or Green-elastic)
material.
The strain energy function is subject to invariance requirements under superposed rigid-

body motions, namely

~

v = U(F) = ¢(F") = (QF) , (5.31)
for all proper orthogonal Q. It can be easily argued that this implies

v = ¢(F) =4 (U) = ¢(C) = ¢(E). (5.32)

Therefore, one may conclude from (5.28), 4 that

o :
2 ' _ . E — .
/Po(poac S) vV = 0, (5.33)
therefore, - -
B oy O
5 = 256 = Mg (5:34)

If the stress response of the hyperelastic material is further assumed isotropic, then, given

any orthogonal tensor Q,

v = ¢(F) = P(FQ) = ¥ (C) = ¥ (Q'CQ) . (5.35)

Recalling the standard representation theorem for isotropic scalar functions of a tensor vari-

able, one may conclude that

¢ = ¢ (I, g, llc) (5.36)
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where Ic,llc, Illc are the three scalar invariants of C. In view of (5.34); and (5.36), one

may conclude, with the aid of the chain rule, that

B o) dlc o Il Y Ol
S = 20 {8[0 oc ' alic oc T alilg aC ] (5:37)
The identities
e 0 B
oc ~acT@ =1L
85% = a% [%{(trC)2—trCQ}] = IcI-C, (5.38)
ollle .
So = cC

can be shown to hold. Indeed, the first two may be confirmed by direct calculation, while the
third one follows immediately from (2.55). In view of (5.38), the constitutive equation (5.37)

takes the form

- of L ab N, o, 9 »
S = 2p Kalc+lcaﬂc)1 1 C am MeC| (5.39)

Example 5.2.1: Kirchhoff-Saint Venant material
In this model, the classical stress-strain law of elasticity at infinitesimal strains is written in terms of the
second Piola-Kirchhoff stress and the Lagrangian strain, that is,

S = 2uE + A(trE)I , (5.40)

where X and p are material constants. This is the Kirchhoff-Saint Venant (or generalized Hookean)
law. The preceding law can be expressed equivalently as

S = u(C-T)+ )\%(IC _3)1 = BA(IC _3)— M] I+uC. (5.41)
This constitutive law is derivable from a strain-energy function defined as
po(Ic, lIc, IIc) = éx(z‘c 32+ fracldp (1E —2Ic —2IIc) . (5.42)
Recalling (1.86), it follows from (5.41) and (1.14) that

1[1 1
T = ~ |-AIp—3)—u|B+-uB*. 5.43
3|33 -9 - u| Bt T (5.43)
Clearly, the Kirchhoff-Saint Venant law reduces to the constitutive equations of isotropic linear elasticity
for infinitesimal deformations.

The Kirchhoff-Saint Venant material law is used to describe materials that undergo a moderate
amount of elastic deformation.
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Example 5.2.2: Compressible neo-Hookean material
Here, the strain energy takes the form

potb(Ic, I, Illc) =

N =

A
(Ic — 3) —uan+§(J—1)2, (5.44)
where A and p are material parameters. Taking into account (5.39) that
S = puI-CH+rJ(J-1C . (5.45)

Pushing the preceding equation forward to the current configuration, it follows that

T = —puB—i)+ A\J—1)i. (5.46)

s
This constitutive law is consistent with linearized isotropic elasticity. Indeed, recalling (2.54) and (2.64),
it can be shown that

L[Tulx = o
= uDB(X,u) + ADJ(X,u)l = 2ue + A(tre)I, (5.47)

as expected.
The compressible neo-Hookean material law is used to describe materials that may undergo large
elastic deformations, such as rubber.

Under quasi-static conditions and under mild assumptions on the strain energy func-
tion U, there exists a variational theorem for nonlinear elasticity, according to which the

total potential functional G(u), defined as
G(u) = / pO\IIdV—/ u'pode—/ u-pdA, (5.48)
Ro Ro Fq0

attains a local minimum at u which satisfies equilibrium.*
Many nonlinearly elastic materials, such as dense rubber, are incompressible or nearly

incompressible. Here, write the constraint of incompressibility as
¢(F) = detF—-1 = 0. (5.49)

To impose incompressibility, it is important to recognize that it is an internal constraint
that affects the form of the strain energy function. In particular, in view of the discussion in

Section 4.5, write the strain energy functional W, of the incompressible elastic material as

pole(F,p) = pol(F) + pe(F) (5.50)

4See Chapter 11 in M.E. Gurtin, Topics in Finite Elasticity, SLAM, Philadelphia, 1981.
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where p is a Lagrange multplier, and proceed as usual to defining the stress starting with
the definition

/ poU.dV = / P-FdV . (5.51)
Po Po
Recalling that ¢ = 0, this implies that
ov  p Oc :
—+——=|—-P| -FdV =0 5.52
fobr Ge= o) v v =0 65
hence, in view of (2.55),
o
P = py—= +pJF . 5.53
PO SF +p (5.53)
Taking into account (1.86) and (5.53), it follows that
o
S = pF ' +pJC! 5.54
Po¥ SR +p (5.54)
and .
ov
T = p—=F" +pi. :
PoF +p1 (5.55)

The last equation demonstrates that the Lagrange multiplier is a pressure term on the Cauchy

stress.

Example 5.2.3: Compressible neo-Hookean material
Start with the strain energy function of the compressible neo-Hookean model in (5.44) and assume
incompressibility, which reduces the function to

pov = Gllc—3) . (5.56)
Taking into account (5.53-5.55), one may write
0
P = Lo {tr (FTE)} +pJF T = pF+pF " (5.57)
S = F'P = ul+pCt, (5.58)
and
T = uB+pi, (5.59)

subject to ¢ = 0. Alternatively, one may start with the stress relations (5.45) and (5.46), and append
the pressure term. For instance, for the Cauchy stress, one would deduce the expression

T = uB—i)+pi = uB+ (p—pi, (5.60)

which suggests that the same meaning of the pressure as in (5.59) to within a constant .

In the nearly incompressible case, one would use the original stain-energy function of (5.44), but
view \ as a penalty parameter by letting it grow toward infinity to satisfy the constraint of incompress-
ibility in approximate fashion.
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From the standpoint of finite element implementation, it is important to observe that
the material stiffness of the hyperelastic material model is symmetric. Indeed, starting from
the term which is associated with the stress-divergence in linear momentum balance, recall
that

[Z3
D[ . 9X - (FS)dV

B dAu\" 9& 3
(u, Au) = /Qe ( 8X) X -SdV + Joy X -FDS(u,Au)dV .

Vv Vv
geometric term material term

(5.61)
As already argued in Section 4.3, the geometric term yields a symmetric stiffness provided &
and Au are interpolated by the same functions. For a hyperelastic solid, the material term

also yields a symmetric stiffness. This is because, according to (5.34),

JS 02

9E PO@ (5.62)

hence, it is symmetric. Therefore, in light of (2.41),

/ o8 -FDS(u,Au)dV = / pr s - DS(u, Au)dV =
QF

. 0X 0X
) |

-
FT 0¢ (ﬁ) F .a—SDE(u Au)dV =
L | 08 3 98
/61 ¥ ax*(ax) Pl om

N —

e
0

dv

oxX  \ox OE
dAu oAu\ "’
T

, Foox +(ax> F

(5.63)

which proves the symmetry.
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acceleration, 2
adaptive remeshing, 75
advective remapping, 74
ALE

mixed variables, 67
algorithmic tangent modulus, 100
arc-length

normal-place, 124

spherical, 123
augmented Lagrangian method, 133
axial vector, 9

BFGS method, 111
bifurcation point, 113, 116
bordering algorithm, 118
branch-switching method, 117

Cauchy tetrahedron, 12
Cauchy’s lemma, 12
Cauchy-Green deformation tensor

left, 4

right, 4
centered-difference method, 56
classical penalty method, 133
configuration

current, 1

reference, 2
consistent differentiation, 100
constraint

bilateral, 128

external, 128

internal, 128

rheonomous, 128

scleronomous, 128

unilateral, 128
continuation method, 117
contraction, 87
control volume, 45

dead load, 97
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derivative
Fréchet, 23
Gateaux, 22

differential
Fréchet, 23
Gateaux, 21

differentiation

automatic, 91
symbolic, 91
divergence theorem, 10

dual method, 128

energy norm, 106
equilibrium path, 115
equipotential relaxation, 78
error
“absolute”, 106
“relative”, 106
Eulerian remapping, see also advective remapping

fixed point, 86
fixed-point iteration, 88
follower load, 54, 97
force vector
external
element, 53
global, 53

gap function, 127

generalized Hookean law, see also Kirchhoff-Saint
Venant law

gradient, 10

Green-elastic material, see also hyperelastic mate-
rial

heat flux, 15

heat flux vector, 15

heat supply, 15

Helmholtz-Hodge decomposition, 139
hyperelastic material, 143
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implicit integration, 55
integration
explicit, 56
internal energy, 15
inverse function theorem, 3

Kelvin-Voigt solid, 99
kinetic energy, 14
Kirchhoff-Saint Venant law, 144

Lagrange multiplier functional, 132
Lagrange’s criterion of materiality, 44
limit point, 113, 116
line search, 107
linear part
function, 23
Lipschitz constant, 94
Lipschitz continuity, 94
loading
proportional, 113
localization theorem, 10

mass, 10
mass density, 10
mass matrix
element, 53
global, 53
material surface, 44
matrix norm
natural, 87
mean-value theorem, 86
mechanical energy balance theorem, 14
mesh rezoning, see also adaptive remeshing
mesh time derivative, 66
momentum balance
semi-discrete form, 54
motion, 3
Jacobian, 3

Nanson’s formula, 4
Newmark method, 55
Newton method

generalized, 92

modified, 91
Newton-Kantorovich theorem, 95
non-linearity

geometric, 20

material, 20

operator-split procedure, 72

perturbed Lagrangian method, 133

polar decomposition
left, 6
right, 6
polar decomposition theorem, 5
primal method, 128
principal directions, 6

quasi-Newton method, 108
quasi-Newton property, 109
quasi-static, 54

radius of attraction, 95
rate-of-deformation tensor, 8
remainder

function, 23
remeshing, 64
residual norm, 106
Reynolds’ transport theorem, 10
Riks-Wempner method, 125

saddle-point problem, 132
Schur complement, 118
secant property, see also quasi-Newton property
semi-discretization, 47
set
convex, 86
Sherman-Morrison-Woodbury formula, 109
solution path, see also equilibrium path
spectral representation theorem, 6
stability point, 113, 115
stiffness
geometric, 102
material, 103
strain tensor
Eulerian, 5
Hencky, 7
Lagrangian, 5
stress power, 14
stress tensor
Cauchy, 12
first Piola-Kirchhoff, 13
second Piola-Kirchhoff, 15
stress-divergence vector
element, 53
global, 53
stretch, 4
stretch tensor
left, 6
right, 6
strong form, 38
strong solution, 40
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tangent stiffness matrix total potential energy functional, 132
global, 101 turning point, see also limit point
tangent vector, 38
tensor updated Lagrangian formulation, 56
adjugate, 30 Uzawa algorithm, 136
identity . variation, 41
referential, 5 .
. velocity, 2
spatial, 5

velocity gradient, 8
virtual power, 41
virtual work, 41

proper-orthogonal, 6
referential, 4

spatial, 4 volumetric distortion, 78
symmetric, 4 vorticity tensor, 8
two-point, 3

tied sliding, 129 weak form, 39

total Lagrangian formulation, 56 weak solution, 40
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