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Abstract

Despite the importance of multiaxial failure of trabecular bone in many biomechanics

applications, to date no complete multiaxial failure criterion for human trabecular bone has been

developed. By using experimentally validated nonlinear high-resolution, micro-mechanical finite

element models as a surrogate for multiaxial loading experiments, we determined the three-

dimensional normal strain yield surface and all combinations of the two-dimensional normal-

shear strain yield envelope. High-resolution finite element models of three human femoral neck

trabecular bone specimens obtained through micro-computed tomography were used. In total,

889 multiaxial-loading cases were analyzed, requiring over 41,000 CPU hours on parallel

supercomputers. Our results indicated that the multiaxial yield behavior of trabecular bone in

strain space was homogeneous across the specimens and nearly isotropic. Analysis of stress-

strain curves along each axis in the three-dimensional normal strain space indicated uncoupled

yield behavior, whereas substantial coupling was seen for normal-shear loading. A modified

super-ellipsoid surface with only four parameters fit the normal strain yield data very well with

an arithmetic error ± SD less than -0.04 ± 5.1%. Furthermore, the principal strains associated

with normal-shear loading showed excellent agreement with the yield surface obtained for

normal strain loading (arithmetic error ± SD < 2.5 ± 6.5%). We conclude that the four-parameter

“Modified Super-Ellipsoid” yield surface presented here describes the multiaxial failure behavior

of trabecular bone very well.
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Introduction

Understanding the failure of trabecular bone under multiaxial loading is of great clinical

importance. Trabecular bone within the proximal femur experiences multiaxial loads—which

can lead to in vivo fracture of whole bones—during traumatic activities such as a fall [1, 2], and

at bone-implant interfaces [3]. Formulation of a multiaxial failure criterion for trabecular bone

can enable continuum-level finite element models of whole bones and bone-implant systems to

mechanistically predict failure loads and failure sites under various loading scenarios. This in

turn could improve hip fracture risk prediction with osteoporosis [4–6], assist in pre-surgical

planning [7], and help better assess the effects of various drug treatments [8]. A multiaxial

failure criterion is also of basic bioengineering interest since it represents a fundamental

structure-function biomechanical characteristic of trabecular bone and as such may provide

insight into biomimetic design of artificial materials.

Although the von Mises yield criterion has been used for trabecular bone [4], this theory

does not account for the tension-compression strength asymmetry of trabecular bone [9, 10].

Cowin [11] proposed the quadratic Tsai-Wu [12, 13] failure criterion of the form:

† 

f = f s,H,Vf( ) = 0 , (1)

in which s is the stress tensor, H is the fabric tensor that characterizes the dependence of the

Tsai-Wu coefficients on the structural anisotropy (i.e. architecture), and Vf is the volume fraction.

Keaveny et al. [14] applied the Tsai-Wu theory to bovine tibial trabecular bone loaded by triaxial

compressive stress and found only modest agreement with experimental data. Using a series of

experimentally-validated nonlinear high-resolution finite element models as a surrogate for

experiments, Niebur et al. [15] demonstrated that bovine trabecular bone under biaxial loading

exhibits uncoupled failure envelopes in on-axis and transverse directions—similar to what has
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been observed for certain cellular solid materials [16–19] and in the bovine triaxial normal stress

experiments [14]. Within an anatomic site, it has been established that yield strains for trabecular

bone under uniaxial [10], axial-shear [20] and biaxial loads [15] are independent of volume

fraction, and that effects of architecture on uniaxial yield strains are minimal [21, 22]. Further,

for combined tensile and shear loading, the maximum principal strain at yield was found to be

very close to the uniaxial tensile yield strain [20], suggesting some form of a principal strain

criterion may be a suitable candidate for trabecular bone under multiaxial loading.

The overall goal of this study was to determine a complete multiaxial yield envelope for

human trabecular bone. Experimental data do not exist for this task, and all current

data—experimental and computational—have been derived only for bovine trabecular bone.

Human trabecular bone, however, differs from bovine bone in its architecture [22] and tissue

material properties [23]. We focused here on human femoral neck trabecular bone due to its

importance in hip fracture etiology. We used experimentally calibrated high-resolution, nonlinear

finite element models [24] to circumvent difficulties involved in multiaxial mechanical testing

and to eliminate the very large number of specimens required to address biological

heterogeneity. Our specific objectives were to: 1) determine the three-dimensional normal strain

yield surface, 2) determine the biaxial yield surface in all nine normal-shear planes, and 3) from

these data, derive a robust multiaxial yield criterion that can be used in continuum-level finite

element models. To the best of our knowledge, this is the first study to obtain a complete

multiaxial yield criterion for any type of trabecular bone.
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Methods

To overcome the difficulties in experimental investigation of the multiaxial strength of

trabecular bone (e.g., load application, stress measurement, statistical power) we used

experimentally validated high-resolution, micro-mechanical nonlinear finite element models.

These specimen-specific models, obtained directly from high-resolution serial sectioning images

[25] or micro-computed tomography [26], have shown excellent agreement with experimental

data under uniaxial [27] and biaxial [15] loading conditions for bovine trabecular bone. Our

overall strategy was to use these nonlinear models as a surrogate for experiments to obtain

hundreds of multiaxial failure points for a single specimen, applying loading scenarios

impossible to attain in a mechanical testing setting.

1. Specimens and finite element models

Micro-computed tomography (micro-CT-20, Scanco Medical AG, Bassersdorf,

Switzerland) images—22 micron spatial resolution—of three human trabecular bone specimens

from three cadavers (age-sex: 62-F, 63-M, and 72-M) were obtained (Fig. 1) and their

architectural indices are given in Table 1. To save computational time, the micro-CT images

were coarsened to obtain 5 mm cubic high-resolution finite element models with 66 micron

hexahedral elements, using previously described protocols [24]. Numerical convergence studies

have shown that this element size is sufficient for this type of trabecular bone [28]. Six linear

elastic analyses were performed for each specimen to enforce alignment with the principal

material orientations [29]. Images were rotated using the Euler angles of misalignment and this

procedure was repeated until the deviation from orthotropic axes was less than 5 degrees. A

bilinear principal strain-based asymmetric tissue material model was assumed for each element

[24, 27]. Previously calibrated specimen-specific values of tissue elastic modulus were assigned
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to each specimen and the same values of tissue yield strains in tension (0.41%) and compression

(-0.83%) were assigned to all specimens [24].

2. Obtaining the yield surface

The yield surface in three-dimensional normal strain space was obtained by analyzing

various load paths for each specimen (Fig. 2). Nonlinear finite element analysis was conducted

using proportional loading and each load path was uniquely defined by the maximum strains

applied in each direction. The three-dimensional normal strain space was spanned at two

different angular increments (Fig. 2 left), of 15 degrees for two specimens and 22.5 degrees for

one specimen, resulting in 266 and 114 load paths, respectively. For each load path, stress-strain

curves were obtained and 0.2% offset yield strains were calculated. The first chronological yield

point—in loading history—was used to construct the yield surface (Fig. 3).

The yield envelopes in all nine normal-shear strain planes (i.e. exx-gxy, exx-gyz, exx-gxz etc.)

were also obtained for all three specimens (Fig. 2 right). In each of these planes, nine load paths

were considered with 18 degrees increments totaling 81 analyses. Altogether, 889 analyses were

performed on IBM SP2 and SP3 parallel supercomputers that required a total of approximately

41,500 hours CPU time.

3. Mathematical modeling

Once the yield envelope data were determined, we sought to find an explicit

mathematical representation that could subsequently be used in continuum level finite element

models. Motivated by evidence that a principal strain type criterion may be successful [20], we

formulated a “modified super-ellipsoid” (MSE) yield surface in three-dimensional principal

strain space as follows:
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† 

g(e1,e2,e3) =
e1 - c1

r1

2/n2
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e2 - c2
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2/n2È 
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Í 
Í 
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˙ 
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+
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r3
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+
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-1, (2)

in which, ei (i=1, 2, 3) are the principal strains, ri (i=1, 2, 3) are the radii, ci (i=1, 2, 3) are the

shift in the center coordinates with respect to the origin, n1 and n2 are “squareness” parameters,

and t is a “flattening” parameter. The shape of this yield surface is a modification of a standard

super-ellipsoid [30] by inclusion of the third term, which sharpens the purely tensile octant and

flattens the compressive octant. In the case when r1= r2= r3, c1= c2= c3, and the squareness

parameters are the same n1=n2, the yield surface is identical in three biaxial principal strain

planes. With these simplifications, a four-parameter (r, c, n, and t), isotropic version of the yield

surface was determined:

† 

g(e1,e2,e3) =
ei - c

r

2/n

i=1

3

Â + t tr(e)
3r

2/n
-1. (3)

The error norm in the approximation of any yield point using the yield functions (2) and

(3) was compared to the envelope determined by the finite element analyses and was defined

using the standard vector norm as:

† 

Error norm (%) =
esurface - eFEA

eFEA
¥100 , (4)

in which esurface is the vector of the closest point on the yield surface to the yield point eFEA,

determined by nonlinear finite element analyses. The nine parameters in (2) and four parameters

in (3) were determined by using a standard nonlinear optimization algorithm in Matlab (v6.5,

The Mathworks, Natick, MA) to minimize the mean error norm for 646 yield points in the three-

dimensional normal strain space for all three specimens.
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4. Testing the yield surface

To evaluate the success of the proposed principal strain yield functions in predicting

yielding for more general loading modes, we used the normal-shear yield points to calculate

principal yield strains for each loading path and specimen. For this case, the principal strain

directions did not coincide with the principal material orientation and hence provided a means to

check if multiaxial yield is indeed associated with principal strains, and, if it is isotropic. The

principal yield strains (eprincipal) obtained from the normal-shear load cases were then compared

against the yield surface given by the calibrated form of (3) and a prediction error was quantified

as:

† 

Prediction Error (%) =
eEqn.3 - eprincipal

eprincipal
¥100. (5)

Results

The yield behavior under multiaxial loading was homogeneous and nearly isotropic.

Yield points in strain-space were remarkably similar not only for all three specimens but also for

all three biaxial planes (Fig. 4). Quadratic fits to the data indicated that failure along each axis

was largely independent (Fig. 4), although there was some interaction. The largest interaction

was observed under triaxial compression—analogous to hydrostatic stress—for which the yield

strain was as much as 39% lower than the uniaxial compressive strain. This effect can also be

seen in the purely compressive quadrant in all biaxial planes (Fig. 4).

Normal-shear yield behavior strongly depended on the particular normal and shear

combination (Fig. 5), indicating anisotropy in this aspect of the failure behavior. For the

combination of axial loads and transverse shear (e.g., exx-gyz, eyy-gxz, ezz-gxy), the yield strain along
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the shear axis showed little coupling. When the normal strain was in the same plane as the shear

strain (e.g., exx-gxy, exx-gxz, eyy-gxy, eyy-gyz, ezz-gyz, ezz-gxz), the normal-shear interaction was more

substantial. This can be observed as the greater reduction in shear yield strain when normal strain

is applied simultaneously.

The MSE yield surface with nine independent coefficients (Table 2) was calibrated to fit

the three-dimensional normal strain-space yield data with a mean ± SD error norm of 3.7 ± 3.1%

(Max. 15.6%) and arithmetic error of -0.06 ± 4.8% (Fig. 6). For the four parameter criterion, the

error norm was only 3.9 ± 3.3% (Max. 17.3%) with an arithmetic error of -0.04 ± 5.1% (Table 2,

Fig. 4, and Fig. 6–7), resulting in the following equation, in which e is given in %:

† 

g(e1,e2,e3) = 4.33  ei + 0.16( )4.83

i=1

3

Â + 0.12 ⋅ tr e( )4.83 -1. (6)

Finally, the yield surface (6) was highly successful in predicting yielding for the normal-

shear loading for which it was not calibrated. In this instance, the prediction error norm (mean ±

SD) combined for all three specimens (243 load cases) was 5.5 ± 4.2% (Max. 18.2%) with a

mean arithmetic error of 2.5 ± 6.5%.

Discussion

The overall goal of this study was to investigate the multiaxial yield behavior of human

femoral neck trabecular bone and from that obtain a multiaxial yield criterion. Our results show

that in strain space the yield behavior under multiaxial loading was nearly homogeneous and

isotropic. Independent analysis of stress-strain curves to obtain yield points along each loading

axis indicated negligible coupling in normal strain yield behavior, but sometimes appreciable

coupling for normal-shear behavior. This overall behavior was described very well by our
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“modified super-ellipsoid” (MSE) criterion, using only four parameters. Further, the MSE

criterion was formulated in terms of principal values and trace of the strain tensor, and the

normal-shear yield data, when transformed into principal strain space, agreed well with this

formulation. Taken together, these results indicate that the multiaxial yield behavior of the

femoral neck trabecular bone studied here shows isotropic and homogeneous behavior in

principal strain-space and this behavior can be successfully represented by a continuous and

smooth four-parameter mathematical function, termed here the Modified Super-Ellipsoid (MSE)

yield criterion.

Several aspects of this study support the validity of our results. The finite element models

used were non-linear with material properties that were calibrated from specimen-specific

mechanical testing data [24]. These models provided a number of advantages. First, data points

for the yield surface were obtained by testing along hundreds of load paths for each specimen,

which is impossible to do with real experiments due to the destructive nature of each mechanical

test. In addition, the biological heterogeneity of human bone samples would necessitate a very

large sample size to conduct a comparable study. Second, application of multiaxial loading

boundary conditions and measurement of strains was relatively easy in comparison to the

challenges present in an experimental approach [14, 20]. Third, the yield surface was formulated

in strain space, which eliminated the strong dependency of the formulated criterion on the

apparent density of each specimen. Finally the proposed yield function (6) for human femoral

trabecular bone has only four coefficients in its reduced form and is a smooth and continuous

function of the strain tensor. These properties facilitate implementation of this yield function in

the material constitution of continuum-level finite element models for prediction of failure of

whole bones.
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Despite these strengths, certain caveats exist. Only three specimens were analyzed from a

single site. The range of volume fraction, 0.28–0.38, spanned by these specimens may limit the

applicability of the yield surface obtained here to trabecular bone from other anatomic sites such

as the greater trochanter, proximal tibia or the human vertebra, all having much lower density

and different architecture. Geometrical nonlinearities (e.g. bending, buckling) are expected to

play an important role in the mechanical behavior of trabecular bone from these latter sites due to

the lower density and variations that may exist in architectural properties (see Appendix) [22,

31–33]. Interestingly the normal-shear yield behavior determined in this study is remarkably

similar to previously reported experimental data on bovine trabecular bone [20], suggesting that

for high-density trabecular bone at least, architecture is not critical. With the addition of

geometrical nonlinearities to the finite element formulation and use of site-specific tissue

material properties, it should be possible to extend the methods of the present study to obtain a

multiaxial yield criterion for other human anatomic sites and as a function of age, disease, and

drug treatment.

Our multiaxial yield data for human bone complement previous experimental [14, 20, 34]

and computational [15] studies on multiaxial failure of bovine trabecular bone. The stress-based

quadratic Tsai-Wu criterion has been the main focus of studies investigating a suitable failure

criterion for trabecular bone since this theory incorporates the asymmetry and anisotropy of

trabecular bone strength [11, 14]. However, after calibration using experimental data, the Tsai-

Wu criterion was not successful in predicting yielding for triaxial compressive loading [14]. The

experimental data obtained in these triaxial experiments indicated uncoupling of yielding along

each loading axis and the discrepancy is due to the fact that the Tsai-Wu criterion imposes

excessive interaction between loading modes [14]. In support of this argument, less interaction
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has been observed in the present study and in a study on bovine trabecular bone [15], which

results in the uncoupling of the yield curves along each loading axis. This uncoupling in

multiaxial normal loading has also been reported for cellular solid type materials [16–19].

Furthermore, investigation of the distribution of yielded tissue in trabecular bone under biaxial

loading has shown that the locations of the damaged material depend on the apparent level

loading direction [15].

While most behavior observed in multiaxial normal loading was isotropic, the yield

behavior for different combinations of normal-shear loading showed different levels of

interactions between the loading modes (Fig. 5) and displayed transversely isotropic behavior.

When the trabecular bone was loaded such that the normal strain was in the plane of shear (e.g.,

ex-gxy, ex-gxz, ey-gxy, ey-gyz, ez-gyz, ez-gxz), there was a high level of interaction which is reflected in

the “curviness” of the fits in Fig. 5. However, for the case when shear was applied out-of-plane

(e.g., ex-gyz, ey-gxz, ez-gxy), the interaction was less coupled, resulting in almost flat curves along

each loading direction, similar to the behavior under biaxial normal strain (Fig. 4). This

interaction between normal and shear strains has been demonstrated theoretically [20]. This is a

result of the architecture of trabecular bone, modeled simply as parallel columns in a cellular

solid model [20]. In this model and for loading in the principal material co-ordinate system,

when the normal load is applied in the plane of shear (e.g., ex-gxy, ex-gxz, ey-gxy, ey-gyz, ez-gyz, ez-gxz),

aligned trabeculae in the normal loading direction support both normal and shear loads and the

direct load-carrying role of transverse trabeculae is minimal (this may not hold in very low

density bone, in which the transverse trabeculae may provide important lateral stability to the

vertical trabeculae). However, when the normal load is perpendicular to the plane of shear (e.g.,

ex-gyz, ey-gxz, ez-gxy), transverse trabeculae are loaded by the shear load while the normal load is
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supported by the longitudinal trabeculae. In this way, there is coupling for in-plane loading and

uncoupling for out-of-plane normal-shear loading.

Although the modified super-ellipsoid (MSE) yield surface was calibrated based on yield

data obtained in the principal material coordinate system and under normal strains, it performed

exceptionally well in predicting yielding for normal-shear loading. The reasons for this are

twofold. First, trabecular bone exhibits nearly isotropic uniaxial yield behavior in normal strain-

space [35, 36]. Because of this, and because the multiaxial normal strain behavior is mostly

uncoupled, the transverse isotropy in yield behavior in the normal-shear planes (Fig. 5) is

transformed into isotropic failure in principal strain space. When the shear is out of plane, the

applied normal strain remains as a principal strain and the out-of-plane shear transforms into

principal strains in the other two orthogonal directions. For the case when shear and normal

strains are in the same plane, the resulting two principal strains (the third is equal to zero) remain

in the plane and one becomes greater in magnitude than the other due to the superposition of the

strains. It also happens that, shear yield strains of trabecular bone, when rotated into principal

strain space, fall close to the surface obtained in three-dimensional normal strain space and are

about twice the value of the uniaxial tensile yield strain [20]. A mechanistic explanation of this is

that shear loading causes bending of trabeculae, which then fail at the hard tissue level because

of high tensile strains.

The simple nature of the four-parameter MSE yield criterion is clinically significant for

two reasons. First, it can be implemented into continuum level finite element analyses used to

improve failure predictions of whole bone and bone-implant systems. The function is convex and

smooth with continuous derivatives (∂g/∂e, ∂2g/∂e∂e), which is a desirable numerical trait in the

implementation of plasticity algorithms [37]. Second, only four experiments are necessary to
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calibrate the four independent parameters: r, c, n, and t of the MSE yield criterion. We suggest

using uniaxial tensile and compressive strain tests to determine c and r, since for these loading

cases the other parameters have a negligible effect in determining the yield function. To

determine t, a triaxial compression or tension load case is required. A biaxial yield point is

required for n, which controls the curvature of the surface at the corners. While all these tests are

difficult to perform in the laboratory, high-resolution finite element analysis can be used to

obtain the necessary data. If successful, this approach would greatly facilitate the investigation of

the effects of aging, disease, and drug treatments on this important aspect of trabecular bone

strength behavior.
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 Appendix

To justify our use of the small deformation assumption in our finite element analyses, we

investigated the effects of geometrical nonlinearities on the elastic tensile, compressive, and

shear behaviors of trabecular bone from human femoral neck (Vf =28.9%), proximal tibia (Vf

=11.0%), greater trochanter (Vf =9.5%), and vertebral body (Vf =8.0%). The trabecular tissue was

modeled as a Neo-Hookean (elastic) material with 1 GPa tissue modulus and a Poisson's ratio of

0.3. Three uniaxial boundary conditions were applied for each specimen: tension, compression,

and shear. All geometrically nonlinear analysis results were compared against those obtained

using the small deformation assumption. Analyses were performed using a custom parallel finite

element code [38] on an IBM SP3 parallel supercomputer.

The stress-strain curves exhibited the same trends for all anatomic sites. Nonlinear tensile

loading caused stiffening, while nonlinear compression and shear resulted in softening (Fig. 8).

With increasing volume fraction, the effect of geometrically nonlinear deformations—quantified

here as the difference in stresses at 0.5% apparent strain—decreased and was minimal for the

femoral neck trabecular bone. Shear loading was observed to have the least differences in

stresses between linear and nonlinear models.

These results indicate that geometrically nonlinear deformations do play a role in the

mechanical behavior of low-density trabecular bone, even at relatively small strains, but that for

high-density (r > 0.4 g/cc or Vf > 20%) trabecular bone from the femoral neck, the small

deformations assumption is reasonable.
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Table 1: Characteristics of each specimen and number of finite element analyses performed.

Sex Age Vf

Tb.Th
mean ±

S.D.

Tb.Sp
mean ±

S.D.
DA SMI

3D normal
strain

analyses

normal-shear
analyses

F 62 0.28 0.18 ± 0.06 0.58 ± 0.20 1.91 -0.13 144 81

M 63 0.29 0.19 ± 0.07 0.64 ± 0.20 1.63 0.11 266 81

M 72 0.38 0.25 ± 0.09 0.63 ± 0.20 1.86 -0.82 266 81

Total 646 243

KEY: Vf: volume fraction (BV/TV); Tb.Th, mean trabecular thickness (mm); Tb.Sp, mean

trabecular spacing (mm); DA, degree of anisotropy; SMI, structural model index. S.D. for the

Tb.Th. and Tb.Sp. parameters indicates intraspecimen variations. All measurements were made

using the TRI method [31].
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Table 2: Coefficients of the modified super-ellipsoid yield surface given in Eq. (2) and (3). The

radius and center has units of % strain; n and t are dimensionless.

Full Coefficient List Reduced Coefficient
List*

r1 0.728 r 0.738

r2 0.719 c -0.157

r3 0.753 n 0.414

c1 -0.145 t 1.417

c2 -0.152

c3 -0.169

n1 0.426

n2 0.347

t 1.396

* r1 = r2 = r3, c1 = c2 = c3, and n1 = n2 assumed
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Figure Captions

Figure 1: Renderings of the three five-millimeter cube trabecular bone specimens used to

develop the multiaxial yield criterion. Age, sex, and volume fraction (Vf) information is shown.

See Table 1 for architectural indices.

Figure 2: Illustration of the method by which the load paths were determined in three-

dimensional normal strain space (left) and in normal-shear strain planes (right). For the three-

dimensional normal strain case, after a plane was spanned at an angular increment of q, the plane

itself was rotated about the x-axis by the same angle. A similar approach was taken for the nine

normal-shear planes. Note that only one of the nine normal-shear strain combinations is shown.

Figure 3: Apparent level stress vs. normalized strain plot for a sample load path in three-

dimensional normal strain space. The 0.2%-offset lines (thin dash) used to determine yield

strains along each loading axis are also shown. The normalized strain (the strain along each

direction divided by the maximum strain applied in that direction) was used to illustrate

chronological yielding in all three directions (marked as points a, b, and c). In this case, yielding

first occurred along the x-axis (a), then along the y-axis (b), and finally along the z-axis (c). At

the first chronological yield point (a) the strains in the other two directions were calculated to

obtain the failure point for the three-dimensional yield surface.

Figure 4: Yield envelopes in three biaxial normal strain planes: (a) exx-eyy, (b) eyy-ezz, (c) exx-ezz.

Circles indicate the yield data from all three specimens; solid symbols indicate yielding along the

vertical axis; empty symbols indicate yielding along the horizontal axis. Dashed lines shown are
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quadratic fits to the yield points along each axis. The closed inscribed envelope shown in (a), (b),

and (c) is the proposed yield surface (four-parameter modified super-ellipsoid) cross-section in

each biaxial normal strain plane.

Figure 5: Yield envelopes in the nine normal-shear planes: (a) exx-gxy, (b) exx-gyz, (c) exx-gxz, (d)

eyy-gxy, (e) eyy-gyz, (f) eyy-gxz, (g) ezz-gxy, (h) ezz-gyz, (i) ezz-gxz. Square, triangle, and circle indicate

the three different specimens. Solid symbols indicate yielding along the shear axis while empty

symbols indicate yielding along the normal loading direction. Dashed lines shown are quadratic

fits to the yield points along each axis. Solid lines are fourth order polynomial fits to the yield

points along the shear axis.

Figure 6: Histogram of percentage arithmetic error of the yield surface representation for the full

(9 coefficients) and reduced (4 coefficients) modified super-ellipsoids vs. the finite element data.

Figure 7: Yield surface (266 points) plotted in three-dimensional normal strain space for one of

the specimens (63-M) (left). The four-parameter modified super-ellipsoid yield surface given by

Eq. (6) is shown on the right for comparison.

Figure 8: Differences in stresses between nonlinear vs. linear solutions (Ds/slinear) at 0.5% strain

decreased with increasing volume fraction. Inclusion of geometrically nonlinear deformations

had the least effect in shear loading. For compression and shear, a softening effect was observed,

but is shown here using positive values of percentage difference. A stiffening effect was seen in

tension.
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Figure 2
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Figure 6
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Figure 7
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