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Abstract

Large-deformation bending and buckling have long been proposed as failure

mechanisms by which the strength of trabecular bone can be affected disproportionately

to changes in bone density, and thus may represent an important aspect of bone quality.

We sought here to quantify the contribution of large-deformation failure mechanisms on

strength, to determine the dependence of these effects on bone volume fraction and

architecture, and to confirm that the inclusion of large-deformation effects in high-

resolution finite element models improves predictions of strength versus experiment.

Micro-CT-based finite element models having uniform hard tissue material properties

were created from 54 cores of human trabecular bone taken from four anatomic sites (age

= 70 ± 11; 24 male, 27 female donors), which were subsequently biomechanically tested

to failure.  Strength predictions were made from the models first including, then

excluding, large-deformation failure mechanisms, both for compressive and tensile load

cases.  As expected, strength predictions versus experimental data for the large

deformation finite element models were significantly improved (p < 0.001) relative to the

small deformation models in both tension and compression. Below a volume fraction of

about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-

80% for compressive loading, while effects were negligible above this volume fraction.

Step-wise nonlinear multiple regression revealed that structure model index (SMI) and

volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 =

0.83, p < 0.03).  Even so, some low-density specimens having nearly identical volume

fraction and SMI exhibited up to five fold differences in strength reduction.  We conclude

that within very low-density bone, the potentially important biomechanical effect of
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large-deformation failure mechanisms on trabecular bone strength is highly

heterogeneous and is not well explained by standard architectural metrics.
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Introduction

 In the context of osteoporotic and anti-resorptive drug-treated bone, recent

studies have shown that DXA cannot fully explain decreases in fracture risk associated

with increases in areal bone mineral density [1, 2].  Accordingly, it has been proposed

that bone quality effects, such as trabecular architecture, have an independent

contribution to fracture risk [3, 4], whereby factors such as excessive trabecular thinning

or loss of connectivity are thought to predispose trabeculae to fail by mechanisms such as

large-deformation bending or buckling [5, 6].  Quantification of the effect of these types

of failure mechanisms on trabecular strength and relating them to architecture — a

potentially important aspect of bone quality — should provide insight into the etiology of

osteoporotic fracture and the mechanisms by which drug treatments reduce fracture risk.

Because of the great technical difficulty of directly observing the failure

mechanisms within trabecular bone in real time, much of the existing information on

trabecular failure mechanisms comes from computational and theoretical studies.

Cellular solid theory predicts that high-density trabecular bone likely fails by tissue-level

yielding [7], and that low-density bone likely fails by excessive bending [8] or buckling

[7], consistent with the form of strength-density characteristics observed in experimental

studies [9, 10].  Even greater detail on tissue-level trabecular failure mechanisms can be

obtained from high-resolution finite element models [11-13].  However, geometrically

nonlinear finite element analysis must be performed in order to describe certain failure

mechanisms—namely, large-deformation bending and buckling [14].  Previous high-

resolution finite element studies derived from micro-CT scans have already shown that

large-deformation effects may be significant even at the yield point [11, 14, 15], an initial
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indicator of failure which occurs well before trabeculae fracture [16, 17]. Other evidence

suggests that the effects of large-deformation failure mechanisms on trabecular strength

should be negligible in very high-density bone [7, 9, 11, 12, 18].  However, the effects of

large-deformation failure mechanisms on strength in intermediate and low-density bone

are not clear, nor their dependence on architecture and bone volume fraction [19].

Using state-of-the-art developments in high-resolution finite element analysis in

conjunction with biomechanical testing, we sought to understand the effects of large-

deformation failure mechanisms on trabecular bone strength. We used trabecular bone

from a variety of anatomic sites displaying large differences in bone volume fraction and

architecture. Our specific objectives were to: 1) quantify the independent contribution of

large-deformation failure mechanisms to trabecular bone strength as a function of

architecture and bone volume fraction; 2) determine the volume fraction below which the

effect of large-deformation mechanisms on strength becomes appreciable; and 3) confirm

that the incorporation of large deformations improves finite element predictions versus

experimental measurements of trabecular strength.  By using computer models based

solely on the trabecular architecture to extract the independent role of large deformation

failure mechanisms on trabecular bone strength, this analysis provides unique insight into

bone quality issues associated with trabecular architecture.

Methods

Fifty-four cylindrical (8 mm diameter, 20 mm length), cadaveric specimens of

trabecular bone were selected from the human femoral neck (n=21), greater trochanter

(n=7), proximal tibia (n=7), and vertebral body (n=19) (Table 1).  All specimens were
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prepared such that the main trabecular orientation was aligned with the axis of the core

[20]. None of the donors had a history of metabolic bone disease or cancer and all

specimens showed no radiographic evidence of damage or bone pathologies. Three-

dimensional high-resolution images were obtained of the full cylindrical core for each

specimen using micro-CT (Scanco mCT 20; Scanco Medical AG, Basserdorf,

Switzerland) or serial milling [21].  Images were then coarsened using region-averaging

to either 40 or 60 mm spatial resolution such that the size of the resulting finite elements

was less than one-fourth of the mean trabecular thickness.  Such element sizes are

recommended for use in elastic analyses [22], and we confirmed numerical convergence

for our fully non-linear models (Appendix A).  The grayscale images were thresholded

such that the volume fraction matched the experimentally measured value.  A finite

element model was obtained from each scan by converting individual voxels into eight-

noded brick elements [23].  Individual models had up to 2.7 million elements.

The same finite plasticity material model [24, 25] was used to model the

trabecular tissue in all finite element analyses. The elasto-plasticity model is of the rate-

independent type described by the theory of Green and Naghdi [26, 27], and was

proposed for the modeling of solids that exhibit elastic-plastic type stress-strain behavior

at the macroscopic scale.  Linear isotropic hardening was incorporated in the model, and

kinematic hardening was defined by a rate-type constitutive law. Tension-compression

asymmetry in trabecular tissue yield strength was also included via pseudo-kinematic

hardening. A Poisson’s ratio of 0.3 and a specimen-specific isotropic modulus was used

to model the hard tissue, for which the tissue modulus was determined using a combined

computational-experimental technique [13, 28]. The tissue-level yield strains in tension



8

(0.33%) and compression (0.81%) were calibrated for 12 of the femoral neck specimens

following an iterative algorithm [29].

Using the above nonlinear material model for all subsequent analyses, small-

deformation (geometrically linear) and then large-deformation (geometrically nonlinear)

finite element analyses were performed for each of the 54 models, and this was done for

both apparent tensile and compressive loading (216 analyses in total).  This approach

eliminated any possible confounding effects of tissue mineralization on the outcome

variables, resulting in effects that were due solely to the volume fraction and architecture

of the trabecular structure. A highly scalable, implicit parallel finite element framework

(Olympus, [30]) was used for all finite element analyses, performed on a Cray-Dell

PowerEdge Xeon cluster parallel supercomputer (Dell, Round Rock, Texas). Total CPU

time was approximately 34,320 hours, equivalent to about 613 hours in real time since

typically 56 CPUs were used in parallel for each analysis.

The apparent yield point was determined from the apparent stress-strain curve of

each specimen using the 0.2% offset method, the elastic modulus being obtained from the

first step of the analysis.  Our main outcome parameter was the percent change in

strength due to the inclusion/exclusion of the large-deformation failure mechanisms

within the model  (Fig. 1).  Using this parameter, the minimum bone volume fraction

above which the percent change in strength was less than 5% across all specimens was

then determined for both compressive and tensile loading.  We termed these the “critical”

values of bone volume fraction.

To elucidate the mechanisms of large-deformation failure, multivariate regression

and partial correlation analyses (JMP, Version 5.0, SAS Institute Inc., Cary, NC) were
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performed on the percent changes in compressive yield strength versus the following

micro-architectural measures (Scanco; Scanco Medical AG, Basserdorf, Switzerland) in

which the statistical analyses were performed both with and without bone volume

fraction: mean trabecular separation (Tb.Sp*), mean trabecular thickness (Tb.Th*), mean

trabecular number (Tb.N*), degree of anisotropy (DA), connectivity density (CD) [31],

and structure model index (SMI) [32].

To assess whether the inclusion of large deformations improved the accuracy of

the models and to establish model validity, finite element predictions of apparent yield

stress from both the small- and large-deformation analyses were compared against the

corresponding experimental results for both tensile and compressive apparent loading.

First, finite element predictions of yield stress were plotted against the experimentally

measured values for all specimens in their respective loading modes.  Next, in order to

gain more insight into role of large-deformation failure mechanisms on the strength

predictions for low-density bone, the same variables were re-plotted for only the subset of

specimens with bone volume fraction less than the critical values.  The error in the finite

element predictions of strength were assessed using a single-group t-test to determine if

the error was statistically different from zero as well as a paired t-test (JMP, Version 5.0,

SAS Institute Inc., Cary, NC) to determine if there was a difference between the

predictions from the small- and large-deformation models.  This procedure was also

repeated for the error in the prediction of yield strain for each specimen, since yield strain

represents a more rigorous statistical test than yield stress, given the wide variation in

yield stress typically seen across specimens [20].
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Details of the mechanical tests are described elsewhere [20]. Briefly, these tests

were conducted using a servohydraulic load frame (858 Mini-Bionix, MTS, Eden Prairie,

MN) using protocols to minimize the end-artifact effects [10].  Specimens were

preconditioned to 0.1% strain, followed by destructive loading to 1.0% strain at 0.5%

strain per second.  Modulus was determined as the slope at 0% strain of a quadratic curve

fit to the portion of the stress-strain curve from 0 to 0.2% strain, and yield was

determined using the 0.2% offset technique [20].  In total, 22 specimens were

experimentally tested in compression and 32 in tension.

Results

For compressive loading, the reduction in predicted strength due to the inclusion

of large-deformation failure mechanisms was always less than 5% for bone having a bone

volume fraction greater than 0.20 (Fig. 2A), but was up to 80% for bone below this

volume fraction.  Since all data points fit on a single exponential relation versus volume

fraction, there were no obvious independent effects of anatomic site on the trends.  For

tensile loading, inclusion of large-deformation failure mechanisms generally resulted in

an increase in strength, but the magnitude of the effect was less pronounced than for

compressive loading.  The increase in strength due to large-deformation failure

mechanisms was about 5–30% for bone below a volume fraction of 0.15, and was

negligible above this volume fraction (Fig. 2B).

All architectural variables were nonlinearly related to the change in strength due

to the inclusion of large-deformation failure mechanisms. After applying a logarithmic-

transformation to percent changes in strength, SMI emerged as the best individual
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predictor, accounting for 77% (p < 0.0001) of the variance (Fig. 3).  The step-wise

multiple regression model that excluded bone volume fraction (R2 = 0.83) indicated that

SMI and Tb.Th* were highly significant predictors of percent change in strength (p <

0.0001 and p = 0.005, respectively) and CD was marginally significant (p = 0.01).  When

bone volume fraction was included as a variate in the step-wise regression model (R2 =

0.82), SMI remained as the only other significant predictor (p < 0.03) beyond bone

volume fraction.

The finite element models having large-deformation failure mechanisms were

capable of prospectively predicting the yield properties for trabecular bone from both

low- and high-density anatomic sites on a specimen-specific basis, whereas the models

without large-deformation failure mechanisms only predicted correct behavior for high

volume fraction specimens.  Across the full range of volume fractions, linear regression

analysis showed that both the small- and large-deformation finite element models were

able to accurately predict yield stress for compressive and tensile apparent loading

equally well (Fig. 4).  However, comparison of the error between predicted yield and the

corresponding experimental data (i.e., error relative to the ideal line Y=X, Fig. 4)

revealed that inclusion of large-deformation failure mechanisms reduced the magnitude

of the mean error in the finite element predictions for all cases (p< 0.0008, Fig. 5).  For

the complete data set, errors in yield stress predictions for the large deformation models

were statistically indistinguishable from zero (p > 0.12) in both loading modes.  By

contrast, the models without large-deformation failure mechanisms significantly over-

predicted yield stress in compression (p = 0.006, Fig. 5A) and moderately under-

predicted in tension.  Similar trends were observed for predictions of yield stress for the



12

subset of specimens below the critical volume fractions (Fig. 5B), and for predictions of

yield strain (Fig. 5C).

Discussion

The results of this study show that large-deformation failure mechanisms can

appreciably reduce the strength of trabecular bone, but that this phenomenon depends

very much on the volume fraction of the specimen.  As expected, inclusion of large-

deformation effects brought the finite element model predictions of strength into better

agreement with experimental measurements for low-density bone, providing support for

the validity of our numerical model.  We found that the magnitude of the strength

reduction correlated with architectural metrics — primarily the structure model index,

mean trabecular thickness, and connectivity density – demonstrating that the large-

deformation failure mechanisms were mediated by the transition from plate-like to rod-

like structure in trabeculae in conjunction with trabecular thinning and loss of

connectivity.  However, these standard architectural metrics failed to explain the great

heterogeneity in the strength reduction due to large-deformation failure mechanisms

observed for specimens having low values of bone volume fraction.  Since the computer

models used here only included variations in volume fraction and architecture between

specimens, our results indicate that there exists a unique bone quality effect related to

architecture that can be very large in low-density bone. At present, since standard

measures of architecture cannot predict the biomechanical effects of such large-

deformation failure mechanisms with much precision, use of fully nonlinear finite
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element analysis on micro-CT scans of trabecular bone may provide unique insight into

bone quality effects.

The main novelty of this study was the application of fully nonlinear, high-

resolution finite element modeling to a large sample size of human trabecular bone taken

from a range of anatomic sites that displayed wide variations in architecture and volume

fraction.  Full cylindrical specimens (8 mm diameter, 20 mm long) were used since our

preliminary analyses on 5 mm cubic specimens showed that large-deformation failure

mechanisms were artificially attenuated for these smaller specimens, presumably due to

constraining effects from the application of roller-type boundary conditions on the top

and bottom surfaces of such small specimens (data not shown).  While we coarsened our

models to resolutions of 40-60 mm, we verified that these resolutions can accurately

reproduce yield strength relative to 20 mm models (Appendix A), consistent with

recommendations developed previously for prediction of elastic properties [22].  As a

further level of validation that our models captured the physical mechanisms initiating

yield, we also confirmed the ability of the finite element models to predict the

experimentally-observed yield values for the very same 54 specimens simulated here

loaded in either tension or compression.  While some previous studies have pointed out

the importance of geometric nonlinearities in finite element analysis of trabecular bone

[11, 14, 15, 18], the possible dependence of large-deformation effects on bone volume

fraction, trabecular architecture, and anatomic site has not previously been reported.

Advances in computational resources and highly scalable parallel finite element code

[30] enabled us to process a large number of specimens efficiently, although it is
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expected that such analyses will soon become more routine as computational resources

continue to expand.

Despite the overall strengths of the techniques used in this study, certain

limitations should also be noted.  Our method for isolating failure mechanisms associated

with large deformations was purely computational since this would be impossible to do

experimentally.  Accordingly, the accuracy of our results depends on the fidelity of the

models used.  Foremost, all finite element analyses assumed homogenous tissue material

properties in order to isolate the effects of bone architecture and volume fraction on

large-deformation failure mechanisms.  However, it has been shown that naturally

occurring variations in human trabecular tissue mineralization have only a modest

influence on apparent-level elastic properties [33, 34], and it remains as an open question

whether these variations affect apparent behavior in the context on nonlinear finite

element analysis.  For example, the ability of a strain field to localize in nonlinear finite

element models provides a means by which the apparent level behavior may become

more dependent on local material and geometric details, and remains a topic of ongoing

research.  Our assumed constitutive model may also represent a limitation of our finite

element modeling.   First, the material failure rule used in this study is deviatoric-based

and assumes that the tissue behaves plastically after yield. Such a model

phenomenologically describes the monotonic stress-strain behavior of bone tissue, and

was shown to correspond well with experimental strength measurements.  Even so, the

absolute predictions of the effect of large-deformation failure mechanisms on strength

may well depend on the nature of the assumed material failure rule [13].  Second, the

hard tissue model used in this study did not include damage or fracture behavior.  The
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lack of observed micro-fracture of trabeculae at the apparent yield point [16, 17] suggests

that modeling of such behavior should not be important in our models, although tissue-

level failure and fracture may become increasingly important as the structure is loaded

beyond the ultimate point.  Our focus here was on effects more relevant to initial failure

of trabecular bone and not those associated with catastrophic collapse.  Since the ultimate

and yield strengths for low-density trabecular bone are highly correlated [35], those

architectural factors reported here that affect yield failure will also correlate with ultimate

failure.  Lastly, the influence of large-deformation failure mechanisms reported here may

not be representative of the trabecular bone’s in situ behavior since we used excised

cylindrical specimens for our finite element analyses.  Since an interruption in

connectivity occurs at the sides of excised specimens of trabecular bone which can

appreciably affect apparent-level behavior [36], large-deformation failure mechanisms

may occur preferentially in peripheral trabeculae in these specimens.  As such, our results

may likely provide an upper bound for the effect of large-deformation failure

mechanisms on strength with regards to in situ behavior.

In addition to the experimental validation of the finite element modeling

techniques used in this study, findings from previous experimental [10] and analytical [7,

10] studies also provide support for our estimate of the critical volume fraction at which

large-deformation failure mechanisms become appreciable.  Both literature studies

concluded (in the context of elastic buckling) that large deformations should become

appreciable below a volume fraction of about 0.2 for compressive apparent loading.

Furthermore, the theoretical transition between deformation mechanisms for trabecular

bone when treated as a cellular solid [7] is governed by the change in architecture of the
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bone from closed-cell plate-like structure to an open-cell rod-like structure, and is only

indirectly related to volume fraction — consistent with our finding that large-deformation

effects were best correlated with SMI.

The results from this study help clarify some concerns regarding high-resolution

finite element modeling of trabecular bone yield behavior.  With the incorporation of a

nonlinear material model, small-deformation finite element analyses have been shown to

accurately capture the yield behavior of trabecular bone from high-density anatomic sites

[11, 12] and have been used in purely computational studies of high-density trabecular

bone failure [18, 37].  The results of the present study confirm the validity of this

previous work since the small-deformation assumption appears to be appropriate for

high-density trabecular bone (above a volume fraction of about 0.2 for compressive

loading).  The small-deformation assumption can, however, lead to significant errors on a

specimen-specific basis for low-density specimens.  Even so, we found that the small-

deformation finite element models were successful at predicting experimental measures

of yield strength across specimens via a linear regression.  As such, the need to include

the physics of large deformations depends on a study’s objectives and may not be

necessary in some instances.

Our results have clinical implications regarding changes in the dominant failure

mechanisms that may occur with aging, disease, and drug treatment.  For example, as

evidenced by the heterogeneity in strength reduction due to large-deformation failure

mechanisms, it could be that some individuals are more susceptible to these types of

failure mechanisms.  Since we found that large-deformation failure mechanisms can

appreciably decrease bone strength beyond the predictions from bone volume fraction or
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standard architectural metrics, clinical assessment of fracture risk or treatment response

may be improved by using a combination of non-invasive high-resolution imaging and

finite element modeling.  Further success at explaining why some low-density specimens

are so prone to large-deformation failure mechanisms may provide unique insight into the

biomechanical effects of aging, disease, and treatment on trabecular strength.
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Appendix A

To ensure that our reported trends for large-deformation failure mechanisms are

numerically accurate, we performed a convergence study using 20 mm resolution images

as compared to the coarsened 40 and 60 mm resolution meshes. Two high-density

specimens from the femoral neck (BV/TV = 26.5% and 26.9%) and two low-density

specimens from the vertebral body (BV/TV = 6.6% and 6.5%) were selected. Using

small- and large-deformation finite element analyses, yield stress and the percent change

in stress due large-deformation failure mechanisms (see Methods, Fig. 1) were compared

between the 20 mm analyses and the coarsened models.

The percent change in strength due to large-deformation failure mechanisms

changed by less than 1% for three of the specimens, but increased from 33% to 45% for

one vertebral trabecular specimen (Fig. 2A). This change was due to the fact that the

yield stress from the small-deformation analysis increased slightly relative to the

coarsened model (1.3%), while the large deformation yield stress decreased by 5.7%.  All

other yield stresses changed by less than 1% between the 20 and 40-60 mm models.

Based on these results, we conclude that the coarsened models can accurately capture

yield stress, while small changes may occur for the change in strength for some low

volume fraction specimens.



22

Tables

Table 1. Specimen and cadaver information. Asterisk (*) denotes specimens that were

used in tissue material model calibration.

Anatomic Site No. Specimens No. Donors Age Volume Fraction
(male/female) (years)

Femoral Neck* 11 10 (5/5) 66 ± 9 0.29 ± 0.05
Femoral Neck 10 10 (5/5) 72 ± 10 0.21 ± 0.05

Greater Trochanter 7 7 (5/2) 75 ± 9 0.11 ± 0.03
Proximal Tibia 7 5 (5/0) 62 ± 16 0.12 ± 0.03
Vertebral body 19 19 (4/15) 77 ± 11 0.10 ± 0.04



Fig. 1 Sample stress-strain curves from small- and large-deformation finite element
analysis of a trabecular specimen typical of compressive loading.  The yield point is
defined using the 0.2% offset method (note that both curves have the same initial
modulus).  The change in strength due to large-deformation failure mechanisms is
quantified as the percent difference in yield stress between the two (relative to the large
deformation model).



Fig 2. Change in strength due to large-deformation failure mechanisms plotted as a
function of bone volume fraction for (A) compressive loading and (B) tensile loading.
Specimens marked by a plus (+) symbol were analyzed at 20 mm resolution (see
Appendix A).  Horizontal dashed lines show 5% large-deformation effects at yield, and
vertical dashed lines denote the corresponding threshold volume fraction.



Fig 3. The percent change in strength correlated well with structure model index (SMI),
indicating that the mechanism behind these large-deformation failure mechanisms is the
transition from plate-like structure in trabeculae (SMI = 0) to a more rod-like structure
(SMI = 3).
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Fig. 4 Experimental measurement and finite element predictions of yield stress for (A)
compressive and (B) tensile loading.  The regression for each loading mode was repeated
for the subset of specimens with bone volume fractions less than the critical values
(denoted by dashed lines in A, B) for (C) compressive (n=12) and (D) tensile (n=18)
loading.  Mean errors for the finite element predictions of yield (relative to the ideal
Y=X) are shown in Figure 5.  Values in brackets ([ ]) represent 95% confidence intervals
for the slope and intercept. SER – standard error of the regression.
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Fig. 5 Mean arithmetic error between finite element predictions and experimental
measurements of yield for small- versus large-deformation analysis.  Errors are given for
(A) yield stress (corresponding to Figures 4A, 4B), (B) yield stress (corresponding to the
subset of specimens in Figures 4C, 4D), and (C) yield strain (complete data set).  Error
bars represent one standard deviation. Note: all data are paired. (*: p < 0.006, +: p = 0.04
vs. zero).




