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Abstract: A new and computationally efficient version of the immersed bound-
ary method, which is combined with the coarse-graining method, is introduced
for modeling inextensible filaments immersed in low-Reynolds number flows.
This is used to represent actin biopolymers, which are constituent elements of
the cytoskeleton, a complex network-like structure that plays a fundamental role
in shape morphology. An extension of the traditional immersed boundary method
to include a stochastic stress tensor is also proposed in order to model the ther-
mal fluctuations in the fluid at smaller scales. By way of validation, the response
of a single, massless, inextensible semiflexible filament immersed in a thermally
fluctuating fluid is obtained using the suggested numerical scheme and the result-
ing time-averaged contraction of the filament is compared to the theoretical value
obtained from the worm-like chain model.
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1 Introduction
Living cells display a high degree of internal mechanical and functional organization and their intracel-

lular biopolymeric scaffold, the cytoskeleton, plays a key role in that [1]. The actin cortex is the part of the
cytoskeleton attached to the cell membrane in most eukaryotic cells. The cortical actin cytoskeleton plays a
fundamental role in cell shape, which is maintained through structural stiffness and rheology. Actin cortex
is a thin actomyosin network that underlies the plasma membrane, consisting of actin filaments cross-linked
by actin-binding proteins and containing motor proteins that generate stress within the network [2]. In or-
der for the actin filaments to become cross-linked, they undergo thermal fluctuations to find a cross-linking
partner and when cross-links between actin filaments are formed, the amplitudes of filament fluctuations are
reduced, supporting the formation of additional cross-links [3].

Actin filaments are biopolymers with sufficient contour length to exhibit significant thermal bending
fluctuations, in the order of approximately 1% of their contour length. However, their diameter can be as
large as ten nanometers or more, giving them noteworthy bending rigidity. Thus, actin filaments are said
to be semiflexible in the sense that their bending stiffness is large enough for the bending energetics –
which favors a straight conformation – to just out-compete the entropic tendency of a chain to crumple up
into a random coil [4]. Therefore, semiflexible polymers exhibit small, yet significant, thermal fluctuations
around a straight conformation. Furthermore, the semiflexible filaments are practically inextensible, i.e.,
their backbone cannot be stretched or compressed. On the scale of several nanometers to micrometers,
biopolymers are often effectively modeled as inextensible elastic rods or fibers with finite resistance to
bending [5]. This is the essence of the classical worm-like chain (WLC) model by Kratky and Porod [6].
The competition between entropic and energetic effects in semiflexible polymers gives rise to many physical
properties and the semiflexible nature of the actin filaments also has major implications on how they interact
with each other to form cross-linked networks [7, 8]. One may think of a single actin filament as a chain
that can respond to forces or thermal fluctuations by bending and end-to-end compression relative to its full
contour length.

There has been deep interest in studying the mechanical response of biological tissues the past decades,
and more specifically, in understanding the mechanical properties of biopolymeric networks, since they play
an important role in cell motility [9, 10] and mechanotransduction [11–13]. Furthermore, the investigation
of the behavior of semiflexible filaments in viscous shear flows at low Reynolds numbers has also gained a
lot of interest due to the relevance of its applications in areas involving biological systems like DNA [14,15],
polymers [16] and proteins, but also in areas such as biotechnology that involve natural and synthetic fibers
[17]. These fluid-structure interaction (FSI) problems are quite challenging because of the complex interplay
of hydrodynamic stresses and the corresponding fiber conformity, however, a two-way interaction between
the immersed filaments and the surrounding fluid is tantamount in order to get a better understanding of the
underlying physical behavior.

Yamamoto and Matsuoka [18] proposed a method for simulating the dynamic behavior of rigid and
flexible fibers in a flow field, with the fibers regarded as made up of spheres that are lined up and bonded to
each neighbor. Tornberg and Shelley [19] studied the dynamics of slender filaments suspended in Stokesian
fluids employing a non-local slender body theory. In most of these studies, the hydrodynamic interaction
was neglected, therefore, there was limited information about the underlying FSI. The fluid was considered
as a passive medium and coupling between fluid and structure was one-way. The Immersed Boundary
Method (IBM) of Peskin [20], which accounts for the two-way interaction between filament and fluid, has
gained substantial popularity the past years in studying the dynamics of filaments in flow fields. However,
in most of the studies where the dynamics of inextensible semiflexible filaments were studied using IBM,
as in [21, 22], a very high stretching stiffness was used for the filaments to approximate inextensibility,
which significantly restricted the time step, thus increasing substantially the computational cost. Wiens
and Stockie [23] used a generalized IB method which can be viewed as a type of penalty method in which
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the rod is only approximately inextensible. Similarly, Huang et al. [24] used a modified IBM with an
extra inextensibility condition to strictly enforce the filament inextensibility. In addition, Kim and Lai [25]
introduced a penalty immersed boundary method to simulate the dynamics of inextensible vesicles in an
incompressible viscous fluid by using two Lagrangian immersed boundaries connected through stiff springs
to represent the real immersed boundary for different purposes. Also, Ong and Lai [26] developed an
immersed boundary projection method based on an unconditionally energy stable scheme to simulate the
vesicle dynamics in a viscous fluid.

In the preceding studies the inextensibility constraint is not enforced strongly and this may lead to nu-
merical errors [24] that cause the filament length to vary over time. On the other hand, when inextensibility
is enforced by Lagrange multipliers, an extended nonlinear system of equations needs to be solved at every
time step, thus again increasing substantially the computational time. An alternative primal approach, more
straightforward and faster computationally, to deal with the inextensibility of semiflexible filaments is to use
the Coarse-Graining Method (CGM) by Moreau et al. [27]. CGM uses discrete models, where the filament
is partitioned into a discrete number of straight segments and the elastic interaction coupling neighboring
nodes/joints is described via discrete elastic connectors encoding the filament’s resistance to bending. How-
ever, up to now, the CGM for filaments has been used by neglecting the two-way interaction between the
filament and the fluid.

In this study, a new computationally efficient version of the IBM, which is combined with the CGM, is
introduced in this study for modeling inextensible filaments in low-Reynolds number flows. An extension
of the traditional IBM to include a stochastic stress tensor is also proposed in order to model the thermal
fluctuations in the fluid in smaller scales. The proposed numerical scheme is validated by comparing the
response of a single actin filament immersed in a thermally fluctuating fluid to the theoretical values obtained
using the WLC model.

The remainder of the article is organized as follows. The WLC model is reviewed in Section 2 and
the theoretical value of the time-averaged contraction for a single inextensible filament under hydrodynamic
thermal fluctuations is derived. The mathematical formulation of the coupled system filament-fluid and the
suggested numerical procedure are described in Section 3. Next, the behavior of a single, massless, inex-
tensible, and semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested
numerical scheme and the resulting time-averaged contraction of the filament is compared to the theoretical
value obtained from the WLC model for the sake of validation. This is followed by a concluding reflection
on the findings in Section 5.

2 Theoretical Background: The Worm-like Chain Model
The mechanical behavior of semiflexible filaments is usually described by the WLC model [6]. This

assumes that the filament is inextensible, has linearly elastic bending energy, and is subjected to thermal
fluctuations. A homogeneous, inextensible and semiflexible filament of straight length L and circular cross
section of radius a is taken to be fixed at one end and free at the other. The domain of the filament is
parametrized by its arc-length s and the position of a typical point is denoted y(s). The motion of the
filament is assumed to be confined to a plane and its bending energy is given by

Eb =
κb

2

∫ L

0
κ

2ds =
κb

2

∫ L

0

∣∣∣∂ 2y
∂ s2

∣∣∣2ds , (1)

where κ =
∣∣∣ ∂ 2y

∂ s2

∣∣∣ is the (linearized) curvature and κb = EI is the flexural rigidity, expressed in terms of the

Young’s modulus E and the second moment of area I = πa4

4 .

Using the Equipartition Theorem [28, Chapter 7] one may calculate the thermal average angular corre-
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lation between distant points along the filament, for which

< t(s) · t(s′)> = e−kBT |s−s′ |
2L , (2)

where t(s) = ∂y(s)
∂ s is the (unit) tangent vector along the filament, kB is the Boltzmann constant, and T is the

absolute temperature of the fluid. The persistence length lp is a characteristic length over which the relative
orientation of two such tangent vectors along the filament remains correlated, and is defined as lp =

2κb
kBT for

a planar motion [1] (see Section 3.2.3), [5]. In simple terms, a filament in thermal equilibrium inside a fluid
will appear rather straight over lengths that are short compared with this persistence length, while it will
begin to exhibit a random, contorted shape otherwise.

For the filament under consideration here, it is assumed that L ≤ lp, therefore it is expected to remain
nearly straight with small transverse fluctuations. Let the x-axis define the average orientation of the fila-
ment segment, and let u represent the transverse displacement taken to be a function of x and time t. The
function u(x, t) may be represented by a Fourier series as

u(x, t) =
∑

q

uq sin(qx) , (3)

where q are the wave numbers defined as q = nπ/L, where n = 1,2,3, . . ., and uq are the corresponding
amplitudes. Such a representation is appropriate for the case of a nearly straight filament with boundary
condition u= 0 at x= 0 and no restraint at x= L, as in Figure 1. Since the transverse displacement is assumed
infinitesimal, the local orientation and curvature of the filament are given by ∂u

∂x and ∂ 2u
∂x2 , respectively. In

view of (1) and (3), the bending energy is given by

Eb =
κb

2

∫ L(t)

0

(
∂ 2u
∂x2

)2

dx =
L
4

∑
q

κbq4u2
q , (4)

as also in [30].

Figure 1: Configuration of filament fixed at one end, where u(x, t) denotes the transverse displacement u
from an initial straight line (dashed). The magnitude of u is exaggerated for illustration.

Since the filament is inextensible, the total arc-length of the filament remains unchanged under the influ-
ence of the fluctuations. Thus, the arc length ds of a short segment is approximately given by

√
(dx)2 +(du)2 =

dx
√

1+ | ∂u/∂x |2. The contraction of the chain relative to its full contour length in the presence of thermal
fluctuations in u is then

∆L =

∫ L

0

(
1− dx

ds

)
ds =

∫ L

0

(
1−
[√

1+(∂u/∂x)2
]−1/2

)
ds .

=
1
2

∫ L

0

(
∂u
∂x

)2

dx , (5)

where use is made of the approximation (
√

1+α2)−1 .
= 1− 1

2 α2, for any α , as well as of the absence
of distinction between integrals over the arc-length and its projection on the x-axis. In view of (3), the
contraction in (5)3 is expressed as

∆L =
1
2

∫ L

0

∑
q

u2
qq2 cos2(qx)dx =

L
4

∑
q

u2
qq2 . (6)
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By way of background, recall that the ensemble average < A(t) > of an observable quantity A, which
is a function of a variable Γ at time t, is defined as

< A(t)> =

∫
γ

A(Γ) f (Γ, t) dΓ , (7)

see, e.g., [29, Chapter 3]. Here, γ is the phase space of Γ and f (Γ, t) is the phase-space distribution
function, defined as the probability that the system will be in state Γ at time t. The probability density
function satisfies the standard consistency condition

∫
γ

f (Γ, t) dΓ= 1.

In the context of the present problem, if the filament is in equilibrium at temperature T , the ensemble
average value < u2

q > of the amplitude-squared is then deduced in accordance with the canonical distribu-
tion [28, Chapter 6], and is expressed as

< u2
q > =

∫
u2

qe−β
L
4
∑

q κbq4u2
qduq

e−β
L
4
∑

q κbq4u2
qduq

, (8)

where β = 1
kBT and the integral is taken over the phase space of uq. Setting q = qi, with qi being the i-th

mode of wavelength, one may write

< u2
qi
> =

∫
u2

qi
e−β

L
4
∑

q κbq4u2
qduq∫

e−β
L
4
∑

q κbq4u2
qduq

=

∫
u2

qi
e−β

L
4 κbq4

i u2
qi e−β

L
4
∑

q 6=qi
κbq4u2

qduq∫
e−β

L
4 κbq4

i u2
qi e−β

L
4
∑

q 6=qi
κbq4u2

qduq

=

∫
u2

qi
e−β

L
4 κbq4

i u2
qi duqi

∫
e−β

L
4
∑

q 6=qi
κbq4u2

qduq6=qi∫
e−β

L
4 κbq4

i u2
qi duqi

∫
e−β

L
4
∑

q 6=qi
κbq4u2

qduq6=qi

=

∫
u2

qi
e−β

L
4 κbq4

i u2
qi duqi∫

e−β
L
4 κbq4

i u2
qi duqi

=
4

κbq4
i L

[
− ∂

∂β
ln

(∫
e−β

L
4 κbq4

i u2
qi duqi

)]
, (9)

where “ln” denotes the natural logarithm. A straightforward calculation results in

− ∂

∂β
ln

(∫
e−β

L
4 κbq4

i u2
qi duqi

)
=

1
2β

, (10)

therefore, for any q, the ensemble average of the amplitude-squared is written as

< u2
q > =

2kBT
κbq4L

=
4

n4π4
L3

lp
, (11)

in terms of the original length L and the persistence length lp. Likewise, using (6) and (11), the ensemble
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average < ∆L > of the contraction ∆L is expressed as

< ∆L > =
L
4

∑
q

< u2
q > q2 =

kBT
2κb

∑
q

1
q2

=
kBT
2κb

∞∑
n=1

(
L

nπ

)2

=
kBT L2

2κbπ2

∞∑
n=1

1
n2

=
kBT L2

2κbπ2

(
π2

6

)
=

L2

6lp
. (12)

It can be observed from (11) that the ensemble average of the amplitude-squared of the bending fluctua-
tions diminishes rapidly for higher-order modes due to the (negative) fourth-power dependence on the wave
number. Also, (12) implies that the longer the persistence length, the smaller the ensemble average of the
contraction ∆L.

The probability density function f in (7) is independent rendering the ensemble stationary. In this case,
the ergodic hypothesis [28, Chapter 15] states then that the ensemble average over all accessible systems
is equal to the time average over a large number of observation of a single system. That is, given any
observable quantity A in a stationary ensemble,

< A > = < A >t =
1
t

∫ t

0
A
(
Γ(τ)

)
dτ , (13)

for sufficiently large observation time t. Therefore, the ensemble averages < u2
q > and < ∆L > in Equations

(11) and (12), respectively, can be estimated by such time averaging.

3 Mathematical Formulation and Numerical Procedure
The fluid and the immersed semiflexible filament constitute a coupled mechanical system. The inex-

tensible filament’s motion is driven by the fluid’s velocity field, while, at the same time, the filament exerts
force on the fluid, thus affecting its motion. The equations of motion that describe the coupled system are
derived and discussed in the remainder of this section.

3.1 The Asymptotic Coarse-grained Elastohydrodynamics
Consider an inextensible massless filament of length L immersed in an incompressible viscous fluid,

and recall that the position of a point of the rod be denoted by y(s). The filament is embedded in a two-
dimensional space associated with orthonormal basis {ex,ey} and is subjected to external contact force fh(s)
per unit length due to the hydrodynamic interactions.

Assuming quasi-static loading conditions, the equilibrium equations are written as
∂n
∂ s

+ fh = 0 ,

∂m
∂ s

+
∂y
∂ s
×n = 0 ,

(14)

where n and m are the (internal) axial force and moment sustained by the filament. Integrating the force
equilibrium equation (14)1 over the entire filament leads to∫ L

0
fh(s) ds = 0 , (15)
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where it is further assumed that the boundary forces vanish, that is, n(0) = n(L) = 0.

Following Moreau et al. [27], the filament is partitioned into N straight subdomains (elements) of
length ∆s = L/N. The Frenet basis along the filament is given by the unit tangent and normal vectors (e‖,e⊥),
respectively, as shown in Figure 2. Also, the angle between e‖ and ex is denoted θ . The discrete counterpart
of the equilibrium equation (15) takes the form

Figure 2: Parametrization of the continuous and discretized filament

N−1∑
i=0

∫ (i+1)∆s

i∆s
fh(s) ds =

N−1∑
i=0

Fhi = 0 , (16)

where Fhi represents the resultant external force experienced by the i-th element. For a filament free of
boundary moments, that is, assuming, m(L) = m(0) = 0, one may take the integral of (14)2 over the entire
filament, use integration by parts, and invoke (14)1 and (16) to conclude that
N−1∑
i=0

∫ (i+1)∆s

i∆s

∂y(s)
∂ s
×n(s) ds =

N−1∑
i=0

∫ (i+1)∆s

i∆s
(y(s)−y0)× fh(s) ds

=
N−1∑
i=0

Mi,y0 = 0 , (17)

where Mi,y0 is the moment of the external force acting on the i-th element about point y0 = y(0). Upon
integrating Equation (14)2 over the domain

(
( j−1)∆s,L

)
, j = 2, . . . ,N, and taking into account (17), it

follows that
N∑

i= j

Mi,y j = m j , (18)

where m j = m(( j− 1)L/N), j = 2, . . . ,N, is the moment at the left end-point of the j-th element. Given
that the moment at any point it is defined as m(s) = κb

∂θ

∂ s ez, where ∂θ

∂ s is the curvature and ez = ex×ey, one
may use the backward finite difference formula to find that

m j =
κb

∆s
(θ j−θ j−1)ez =

κb

∆s
α jez , (19)

where α j = θ j−θ j−1, j = 1,2, . . . ,N, is the angle between ei−1,‖ and ei,‖, as shown in Figure 2, and thus

θi =
i∑

j = 0

α j , (20)
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with α0 = θ0 .

In the low-Reynolds number regime, the hydrodynamic force experienced by the filament immersed in
fluid with velocity field v can be defined according to the Resistive Force Theory [31] as

fh(s) = −ξ

[
e⊥ ·

(
ẏ−v(y)

)]
e⊥+η e‖ ·

[(
ẏ−v(y)

)]
e‖ , (21)

where v(y) is the fluid velocity interpolated at the filament positions, and ξ and η are the normal and
tangential drag coefficients, respectively. Here, the external contact force fh(s) is due to the resistance that
the filament points experience as they move in the fluid.

The position y at time t is a point in the filament that satisfies y(s) = y0 +
∫ s

0 e‖(τ)dτ , so that in the
discrete case

yi = y0 +

i−1∑
k=0

ek,‖ ∆s , (22)

for i = 1, . . . ,N, thus yi = y((i−1)L/N) thus satisfying the inextensibility constraint from the outset. Here,
ek,‖ denotes the tangent Frenet vector in the k-th element.

There are now N +2 parameters describing the position of the filament, that is, (y0,α0, . . . ,αN−1). To
determine them, there are two total force balance equations in (16), one torque balance in (17), and N− 1
equations for the internal moment balance in (18), thus rendering this elastohydrodynamic system closed.

With slight abuse of notation, let yi(s) denote the current position of a filament point on the i-th element,
so that

yi(s) = yi +
(
s− (i−1)∆s

)
ei,‖ . (23)

The total hydrodynamic force on the i-th element is found from (21), with the aid of (16) and (23), to be

Fhi =

∫ (i+1)∆s

i∆s
fh(s) ds = −ξ

{
∆s
[
(ẏi−v) · ei,⊥

]
+

∆s2

2
θ̇i

}
ei,⊥

+η ∆s
[
(ẏi−v) · ei,‖

]
ei,‖ . (24)

Note that, in general, v varies along the domain
(
i∆s,(i+ 1)∆s

)
. However, to within a small error, the

velocity is assumed constant in each element. Using Equations (17) and (21), one finds that

ez ·Mi,y0 = ez ·
∫ (i+1)∆s

i∆s
(y(s)−y0)× fh(s) ds

= − ∆s2

2
ξ

[
(ẏi−v) · ei,⊥

]
+

∆s3

3
ξ θ̇i

+(yi−y0)×
{
−∆s η

[
(ẏi−v) · ei,‖

]
ei,‖

+

(
∆s ξ

[
(ẏi−v) · ei,⊥

]
+

∆s2

2
ξ θ̇i

)
ei,⊥

}
· ez . (25)

Therefore, Equations (16-18), with the aid of (24) and (25), take the form
N−1∑
i = 0

Fhi = 0 ,

ez ·
N−1∑
i = 0

Mi,y0 = 0 ,

ez ·
N−1∑
i = k

Mi,yk =
κb

∆s
αk , k = 1, . . . ,N−1 .

(26)
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These coarse-grained elastohydrodynamics equations, in conjunction with Equations (20) and (22), can
be cast a system of ordinary differential equations of the form

[A][Q][Ẏ] = [B]+ [A][V] , (27)

where [Y] = [x0 y0 θ0 α1 . . .αN−1]
T are the N + 2 parameters with (x0,y0) = y0, and [V] is a vector of

size 3N, containing in the first 2N entries the x- and y-components of the flow velocity at the filament points
i = 0,1, . . .N−1 with the remaining entries being zero.

The matrix [A] has dimensions (N +2)×3N and its coefficients are given, for all i, j = 0, . . . ,N−1, by

a1,i = ∆s (−ξ cos2
θi−η sin2

θi) ,

a1,N+i = ∆s (η−ξ )cosθi sinθi ,

a1,2N+i =
∆s
2

sinθi ,

a2,i = ∆s (η−ξ )cosθi sinθi ,

a2,N+i = ∆s (−η cos2
θi−ξ sin2

θi) ,

a2,2N+i = −∆s
2

cosθi ,

ai+2, j =

[
1 x j− xi y j− yi

][
∆s2

2
sinθ j ∆s (η−ξ )cosθ j sinθ j ∆s (ξ cos2

θ j +η sin2
θ j)

]T

,

ai+2,N+ j =

[
1 x j− xi y j− yi

][
− ∆s2

2
cosθ j −∆s(η cos2

θ j +ξ sin2
θ j) ∆s(ξ −η)cosθ j sinθ j

]T

,

ai+2,2N+ j =

[
1 x j− xi y j− yi

][
−η

∆s3

3
−η

∆s2

2
cosθ j −η

∆s2

2
sinθ j

]T

.

(28)

If j < i, then ai+2, j = ai+2,N+ j = ai+2,2N+ j = 0. Also, the column vector [B] of size N +2 is given by

[B] =
[

0 0
κbα0

∆s
κbα1

∆s
. . .

κbαN−1

∆s

]T
. (29)

In addition, matrix [Q] is a 3N× (N +2) transformation matrix defined as

[Q] =



1 0
...

...

1 0

[Q1]

0 1
...

...

0 1

[Q2]

[0N,2]

1 0 . . . 0

1 1
. . .

...
...

. . . 0

1 . . . 1



, (30)
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where [Q1] and [Q2] are N×N matrices whose elements are given by the general formula

Qi, j
1 = −∆s

i−1∑
k= j

sin
( k∑

m=1

αm

)
,

Qi, j
2 = ∆s

i−1∑
k= j

cos
( k∑

m=1

αm

)
,

(31)

with Qi, j
1 = Qi, j

2 = 0 if i≤ j. Also, [0N,2] denotes an N×2 zero matrix.

The system of equations in (27) is integrated in time using an implicit first-order method with constant
time step ∆t. Writing the system of equations at time tn+1, one can obtain [Yn+1] by solving implicitly the
system of equations
[An][Qn]

∆t
[Yn+1]− [Bn+1] =

[An][Qn]

∆t
[Yn]+ [An][Vn] , (32)

in the typical time domain (tn, tn+1].

3.2 Hydrodynamic Fluctuations and Equations of Motion
As one approaches smaller length scales, in the order of µm, thermal fluctuations play an essential role

in the description of the fluid flow. Thermal fluctuations may be included in the continuum description of
the fluid by means of additional stochastic fluxes. The resulting equations of motion for the fluctuating fluid
turn out to be stochastic partial differential equations. Landau and Lifshitz [32, Chapter 9] proposed such
equations, which include an additional stochastic stress tensor in the Navier-Stokes equations, the so-called
Landau-Lifshitz Navier-Stokes (LLNS) equations.

To account for thermal fluctuations, the Cauchy stress tensor T for an incompressible viscous fluid can
be modified as

T = −pi+2µD+ S̃ , (33)

where p is the pressure, µ is the dynamic viscosity of the fluid, D is the rate-of-deformation tensor, and S̃
stands for the stochastic stress tensor, which models the inherent molecular fluctuations in the fluid. The
required stochastic properties of S̃ have been derived by Landau and Lifshitz [32] in order to satisfy the
fluctuation dissipation theorem [32], according to

< S̃(x, t)> = 0 ,

< S̃(x, t)⊗ S̃(x′, t ′)> = 4kBT µδ (x−x′)δ (t− t ′)I ,
(34)

where δ (·) is the Dirac delta function, I is the symmetric fourth-order identity tensor, < ·> denotes ensem-
ble average and ⊗ denotes tensor product.

The low-Reynolds number Navier-Stokes equations for an incompressible, Newtonian fluid with the
additional stochastic stress tensor to account for the thermal fluctuations can be written, in the absence of
body forces, as

div v = 0 ,

−grad p+µdiv grad v+div S̃ = ρ
∂v
∂ t

(35)

where, again, v is the fluid’s velocity field and also ρ is the density of the incompressible fluid. As it turns
out, the flow in cytosol is of low Reynolds number, in the order of 10−9, in large part due to the cell’s size,
which is in the order of µm [1]. For such flows it is reasonable to adopt the unsteady Stokes approximation,
where the convective rate of change ∂v

∂ t v in the acceleration is neglected, but the spatial time derivative
term ∂v

∂ t is retained in order to capture the effects of the unsteady flow.
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Consider now an incompressible viscous fluid occupying a two-dimensional domain Ω and undergoing
thermal fluctuations. The IBM formulation in its strong form can be understood as an enrichment of the
two-dimensional Navier-Stokes equations accounting also for the forces generated by the deformation of
the immersed body, with the linear momentum balance equations in (35)2 for the fluid taking the form

−grad p+µ div grad v+div S̃+F = ρ
∂v
∂ t

, (36)

where F is the force that the filament exerts to the fluid.

In the discrete case, the force term F included in the Navier-Stokes equations is defined to be equal
and opposite to the equivalent hydrodynamic force Fhi experienced by the fiber moving with the fluid with
velocity field according to the Resistive Force Theory [31] and Equations (21) and (24). Also, the perpen-
dicular and parallel drag coefficients in Equation (21) for a filament of cross-sectional radius r and length 2l
are defined, following Lighthill’s classical analysis [33], as

η =
8πµ

ln(l2/r2)+1
, ξ =

4πµ

ln(4l2/r2)−1
. (37)

There exist many choices for representing the stochastic stress tensor S̃ in Equation (36)1 [34]. As
suggested in [35–38], a formulation for the stochastic stress tensor S̃ that requires the fewest possible random
numbers and satisfies the fluctuation dissipation theorem [32] and Equation (34), is expressed as

S̃ =


√

4kBT µ

∆V ∆t R̃, if i = j

√
2kBT µ

∆V ∆t R̃, otherwise

, (38)

where ∆V = V
nel = vol(Ωe), where V is the volume of the fluid domain Ω, nel is the total number of elements

in the Eulerian spatial discretization of the fluid, and Ωe is the domain of element e used in this (uniform)
discretization. The tensor R̃ is symmetric, defined as R̃ = R+RT

2 , where a realization of R is sampled using
a stream of independent, standard normally distributed random numbers at each time step ∆t for every
element Ωe of the fluid domain.

3.3 Summary of the Numerical Algorithm for the hybrid IBM-CGM
The implementation of the proposed numerical algorithm for simulating flexible inextensible filaments

immersed in a fluid can be summarized as follows

Algorithm 1 Hybrid IBM-CGM algorithm

Initialize fluid field variables v0 and [p0]
Initialize immersed curve position [y0]
Set n = 0
while n < n_step do

Compute [Vn] by interpolating [vn] at the filament positions
Compute the filament position [yn+1] using Equations (32)
Compute [Fhi] = [An][Vn]
Distribute Lagrangian interaction force [Fn] to the Eulerian grid
Calculate [S̃] using Equation (38) for every cell of the fluid
Solve for [vn+1] and [pn+1] based on Equations (36)
n← n+1

end while
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4 Model Validation
This section focuses on the mechanical response of a single massless filament immersed in a thermally

fluctuating fluid and aims to validate the results of the computational model described in the previous section
by comparison with the theoretical prediction based on the WLC model in Section 2.

The biopolymers that comprise the cytoskeleton consist of aggregates of large globular proteins that
are bound together rather weakly, as compared with most synthetic, covalently bonded polymers [5]. Nev-
ertheless, they can be surprisingly strong, due to their relatively large diameter, which makes their bending
rigidity the dominant attribute determining their mechanical behavior on the cellular scale. Even with this
mechanical resistance to bending, however, cytoskeletal filaments can still exhibit significant thermally in-
duced bending fluctuations because of Brownian motion in the surrounding fluid. Actin filaments, owing to
their relatively large bending stiffness, have long persistence length compared to their total contour length,
which practically means that an actin filament in thermal equilibrium in a fluid will appear rather straight.
Here, the results of simulations of an inextensible filament immersed in a fluid domain with thermal noise
are used to verify that, after a sufficient amount of time, the time-averaged contraction < ∆L >t of the
filament approaches the theoretical value of the ensemble average < ∆L > derived in Section 2.

The inextensible filament is modeled by means of the CGM described in Section 3.1. The filament has
contour length of L= 5 µm (typical lengths range from 100 nm to a few microns [39]) and is initially straight
and fixed at one end, as shown in Figure 1. Its bending rigidity is taken equal to κb = 10−19 Nm. The filament
is immersed in a fluid domain which has temperature of T = 300 K, dynamic viscosity µ = 0.001 Pa · s−1,
and fluid density ρ = 1000 kg/m3, since cytosol is composed mainly of water. The fluid domain is of
size 10−5 µm×10−5 µm and the stochastic Navier-Stokes equations in (36) are solved in it under periodic
boundary conditions. The fluid domain is discretized using 40× 40 Q2-Q1 Taylor-Hood elements [40],
while the filament is discretized by N = 10 elements. For both the solid and the fluid, a constant time
step ∆t = 10−5 s is used. The algorithm described in Section 3.3 is employed to resolve the fluid-solid
interaction.

0 1 2 3 4 5 6 7 8
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Figure 3: Time average (log scale) of inextensible filament’s contraction < ∆L >t as a function of the
number of time steps under thermal fluctuations
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Figure 3 depicts the results of the simulation described above. The time-averaged contraction < ∆L >t

is plotted as a function of the number of time steps. It can be concluded from the plot that after around 6∗106

time steps, < ∆L >t converges to a value which is approximately equal to 3.31×10−13. This compares very
well to the theoretical value for the ensemble average obtained from Equation (12), which is approximately
equal to 3.45× 10−13 for a relative error of approximately 4%. In view of this agreement, the comparison
may serve as validation of the proposed numerical algorithm used to simulate the fluid-structure interaction
of the immersed filaments under thermal fluctuations.

5 Conclusions

In this study, a modified and computationally efficient version of the Immersed Boundary Method, com-
bined with the Coarse-Graining Method, was proposed for modeling inextensible semiflexible filaments in
low-Reynolds number flows. Thermal fluctuations in the fluid were modeled by including a stochastic stress.
The mechanical behavior of a massless, inextensible, and semiflexible filament immersed in a thermally fluc-
tuating fluid was investigated using the suggested method. The resulting time-averaged contraction of the
filament compares very favorably to the theoretical value for the ensemble average of the same quantity,
as obtained from the Worm-like Chain model. On the basis of this analysis, the proposed hybrid algorithm
appears to be both robust and accurate, and could offer a reliable means for investigating the combined effect
of multiple (and possibly interacting) filaments in low-Reynolds number flows.
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